
Efficient Algorithms to Solve a Class of Resource
Allocation Problems in Large Wireless Networks

Jun Luo
School of Computer Engineering
Nanyang Technological University

Singapore 639798
Email: junluo@ntu.edu.sg

André Girard
Groupe d’Études et de Recherche

en Analyse des Décisions
Montréal, Canada H3T 2A7

Email: andre.girard@gerad.ca

Catherine Rosenberg
Department of Electrical and

Computer Engineering
University of Waterloo

Waterloo, Canada N2L 3G1
Email: cath@ecemail.uwaterloo.ca

Abstract—We focus on efficient algorithms for resource al-
locations in large wireless networks. We first investigate the
link scheduling problem and identify the properties that make
it possible to compute solutions efficiently. We then show that
the node on-off scheduling problem shares these features and is
amenable to the same type of solution method. Numerical results
confirm the efficiency of our technique for large scale problems.
We also extend the technique to the case where the objective
function is nonlinear showing that our technique blends smoothly
with a sequential linear programming approach. Numerical
results for a cross-layer design with a nonlinear fairness utility
show that it is possible to compute optimal solutions for large
wireless networks in reasonable CPU time.

I. INTRODUCTION

Resources such as bandwidth or power are generally quite
scarce in multihop wireless networks, so that the problem of
their optimal allocation has received a lot of attention over
the last few years. This problem includes, among others, link
scheduling, both for time sharing and spatial reuse, power
control, channel allocation, gateway or relay placement, and
node on-off schedule for energy saving. Many approaches
have been used to study these problems and their variants.
In most cases, they yield hard combinatorial optimization
problems. Some analytic methods can be used to provide
bounds on various measures of network performance but this
generally requires some strong simplifying assumptions (e.g.,
[1]). However, exact numerical solutions are usually needed
both to understand the trade-offs that are available and to
actually design the networks. Our literature survey seems to
indicate that current techniques are limited in the size of the
problems that can be studied, e.g., to about 20 nodes for a
cross-layer design with a nonlinear objective [2] , which is
not nearly large enough to design realistic networks.

Recently, we have developed an efficient solution technique
for jointly optimizing scheduling, routing, power control and
rate adaptation in a fixed multihop wireless network, with a
linear objective function [3]. This we call the SRPR problem
with linear objective. It can deal with relatively large instances,
can handle arbitrary network parameters such as topology,
interference model, routing, etc, and can deliver both optimal
and near-optimal solutions.

The goal of this paper is to show how this solution technique
can address more problems than simply those of [3]. First,

we review in Section II the features of the link scheduling
problem (LSP), a simplified version of SRPR, on which the
solution method is based. Next, we show in Section III how
another type of problem, namely node on-off scheduling for
energy saving, has features similar to those of LSP and can
be solved by similar techniques. Numerical results for this
problem demonstrate the efficiency of our technique for large
scale problems. In Section IV, we extend the solution method
to problems with a nonlinear objective. We present in Sec-
tion IV-E numerical results for the SPPR with a proportional
fair objective, showing that the solution technique can handle
reasonably large networks in moderate computation time. We
conclude our paper in Section V.

II. REVIEW OF THE SOLUTION TECHNIQUE

We have studied how to maximize the minimum average
throughput of a fixed multihop wireless network operating
under a joint scheduling, routing, power control, and rate
adaptation. This we call the SRPR problem with linear objec-
tive [3]. The interested readers can find the complete model
in the reference and for now, we concentrate on the link
scheduling sub-problem which is the difficult part and is
the basis on which many extensions can be built. We use
this problem as an example to illustrate the type of problem
structure that is amenable to our numerical technique and to
explain how an efficient solution can be constructed.

A. Compact Formulation of Hard Constraints

We model the multihop network at the PHY and MAC
layers as a set N of nodes and a set L of directed links,
with |N | = N and |L| = L. Each node i ∈ N has a location
(xi, yi). We denote by Li the set of links incident (inbound
or outbound) to a node i. A link l ∈ L is identified by its
source-destination pair o(l) and d(l).

At any given instant, the scheduler designates a set of links
to transmit simultaneously to allow spatial reuse. These links
must be chosen in such a way that 1) they meet certain
conditions related to the topology of the network and 2) they
do not interfere with each other beyond a certain limit. We
call such a set of links an Independent Set (ISet).

The typical topological constraints can be expressed as
follows. Two links l = (i, j) and l′ = (i′, j′) do interfere



with each other if (i = i′) ∨ (i = j′) ∨ (j = i′) ∨ (j = j′).
Therefore, a set s ⊆ L is an ISet only if:

(i 6= i′) ∧ (i 6= j′) ∧ (j 6= i′) ∧ (j 6= j′) ∀l, l′ ∈ s. (1)

There are many types of interference constraints. One example
is the SINR-based constraints, which are based on the assump-
tion that the interference at the receiving end of a given link
is the cumulative interference from all the links that are active
at the same time. In this case, a set s ⊆ L is an ISet iff it
meets condition (1) and the condition:

γl =
GlPl

N0 +
∑
l′∈s:l′ 6=lGl′lPl′

≥ βl ∀ l ∈ s. (2)

Here, γl is the signal to interference plus noise ratio (SINR)
of link l, βl is the SINR threshold for a link rate cl, Pl is
the transmit power of the source of link l, N0 is the average
thermal noise power, and Gl (resp. Gl′l) is the channel gain
of link l (resp. from o(l′) to d(l)).1

Optimization problems for scheduling such networks can
take a number of forms with different objectives and con-
straints but in all cases, there must be a set of binary decision
variables ql to indicate whether link l is active at a given
instant, making them Integer Programming (IP) problems.
These variables must meet a set of hard linear constraints:∑

l∈Li

ql ≤ 1 ∀ i ∈ N (3)

M (1− ql) + PlGl ≥ βl

N0 +
∑

l′∈L:l′ 6=l

Pl′Gl′lql


∀ l ∈ L (4)

where M is some large constant to express the fact that the
constraint needs to be satisfied only for the links that are active.
Eqs. (3) and (4) correspond to (1) and (2), respectively. The
structure of these constraints makes it difficult to solve these
problems directly for large networks using generic solvers.
This paper deals with the application and generalization of a
technique, the Extensive Formulation, to solve them efficiently
for large instances.

B. Extensive Formulation

A standard technique for solving some classes of IPs or
MIPs is based on the so-called extensive formulation [4]. This
is useful when there are two sets of constraints: easy and hard,
also called complicating, constraints. The easy constraints are
such that optimization can be made efficiently, e.g., network
flows, spanning tree, etc, while the hard constraints cannot be
handled so easily and lead to hard problems, e.g., coupling

1The benefit of associating certain properties (such as the rate and transmit
power) with a link is that a physical link can be decomposed into several
logical entities, with each represented by a given set of properties. Conse-
quently, the link scheduling problem is extended to a more general resource
allocation problem. For example, let both cl and Pl take values from a finite
set C and P , respectively. The activation of the (logical) link l implies also
the allocation of rate cl and power Pl to this link. Moreover, associating
properties such as the channel gain allows us to extend link scheduling also
to channel allocation.

constraints in a network flow problem or, for any problems
involving link scheduling, constraints (3–4).

The extensive formulation of the problem is built by taking
all the variables involved in the hard constraints, for instance
the q variables, and listing all possible values of these variables
compatible with the hard constraints. Here we call a set of
these variables a configuration. An ISet is such a configuration.
The hard constraints are removed from the problem and
the remaining optimization is then to choose the appropriate
configurations and optimize whatever other variables are left
subject to the easy constraints.

In some cases, the extensive formulation can be solved more
easily than the original problem. We have found this is the case
for the link scheduling problem, as explained below.

C. Link Scheduling Problem (LSP)

In addition to the PHY and MAC layer models described
earlier, we have F as the set of flows and |F| = F . We also
have, for each link l, a traffic load xfl , which is the average
traffic of flow f on link l. The link scheduling problem (LSP)
that we consider is to find a schedule of minimum length that
is able to carry these loads [5], [6].

To construct the extensive formulation, we need to enumer-
ate all the ISets compatible with the constraints (3–4). We
denote by I the set of all ISets and the structure of I is
represented by the link-set incidence matrix Q

ql,s =

{
1 if l ∈ s
0 otherwise

(5)

with l ∈ L and s ∈ I. Note that each column qs of Q is
a binary vector that represents an ISet s. Based on this, the
vector of decision variables α = [αs]s∈I is defined where αs
is the fraction of the time that ISet s is going to be used. The
LSP problem has the following form

max
α�0

−
∑
s∈I

αs (6)

(νl) cl
∑
s∈I

ql,sαs ≥
∑
f∈F

xfl ∀ l ∈ L (7)

where we have put the Lagrangian multipliers corresponding
to each constraint in parenthesis. In this formulation, we have
νl ≥ 0. Eq. (7) expresses the fact that the average traffic on
a link cannot be larger than the link rate cl times the amount
of time the link is used. Note that this problem is a crucial
component of many network design problems, including the
cross-layer design problem we will present in Section IV-D.

The first important feature of this formulation is that all
the integer variables have been removed so that the extensive
formulation is a standard linear program. This immediately
suggests trying to solve it with a standard LP solver. This in
turn requires ISet enumeration. We now discuss some of the
features of the LSP that make this enumeration possible for
relatively large cases.



D. Complete Enumeration

The extensive formulation has a very large number of
αs variables, one per ISet, which generally grows exponen-
tially with the problem size. For sufficiently small networks,
they can be explicitly enumerated and the resulting LP can
be solved using a standard simplex algorithm since all the
columns of Q in constraint (7) are available. Such a direct
approach faces two difficulties. First, enumerating all the
columns can be a tremendous task. Secondly, solving an LP
with many variables can also be hard even though good com-
mercial LP/NLP solvers such as CPLEX [7] and MINOS [8]
can deal with problems with hundreds of thousand variables.
This approach does have an advantage, though: once Q is
known, other components of the problem, such as the cost
coefficients of a linear objective or the flows, can be changed
freely without much complication.

For this approach, an efficient enumeration to generate all
columns of Q is necessary. It is based on the observation that
removing a link from an ISet gives another ISet, since having
one less link cannot prevent a set of links that could previously
transmit from doing so with one link removed. This we call
the divisible property:

Definition 1: We say that a binary vector q′ is a subvector
of another binary vector q if q′ is obtained from q by setting
one or more of q’s components to zero. We denote this relation
q′ v q. We then say that Q is divisible if for any q ∈ Q, every
q′ such that q′ v q is also in Q.

If Q is divisible, the enumeration can be reasonably fast
using a depth-first search algorithm. Define the size of vector
q as the number of non-zero elements of q. The root of the
search tree starts at vectors of size 0. Each node of the tree
corresponds to a binary vector q. Let Sn be the set of nodes
of size n. For each q′ ∈ Sn, we construct a child node q of
size n + 1 if 1) q′ v q and 2) q satisfies the conditions that
define Q. In other words, the fact that the matrix is divisible
allows us to construct ISets of size n based only on the ISets
that were created at level n − 1; children of a node q′ 6∈ Sn
are all pruned from the search tree.

In addition, the solution of the resulting LP/NLP can be
made faster if we can reduce the size of Q. This can be
done due to the following proposition that summarizes the
observations made in [9], [10]:

Proposition 1: The range space of Q is the span of all the
maximal column vectors, where q ∈ Q is maximal if q 6v
q′,∀q′ ∈ Q.
The depth-first search can then be pruned to leave only
maximal vectors which can be used as input to the LP solver.

This divisibility property of the constraint matrix is the sec-
ond important feature of the LSP that makes a direct solution
of the LP feasible. Nevertheless, we have found that such a
direct approach is still limited in the size of the problems that
it can solve, and we have developed another solution technique
based on column generation which can solve much larger
problems by taking advantage of this divisibility property.

E. Column Generation

For large problems, the list of ISets cannot be built explicitly
but may be generated as needed by the optimization. The
method is called column generation and the generation of a
configuration that can improve the current solution is called
the pricing [4]. Column generation is particularly useful when
the pricing operation is a simple problem such as a shortest
path or minimum-cost flow. Nevertheless, we want to show
that column generation can still be very efficient even though
the pricing problem remains hard for LSP.

Column generation is basically the revised simplex algo-
rithm which performs the standard simplex operations using
only the current basis matrix. The only difference is that a
sub-problem, called the pricing problem, is solved at each
iteration to find the off-basis column with a sufficiently large
reduced price2. If the solution of the pricing sub-problem has
a positive value, the corresponding column is pivoted into the
basis; otherwise, the current solution is optimal. For the LSP,
the computation time is dominated by the pricing operation.

1) Optimal Pricing: If we use the standard revised simplex
algorithm, we must solve the pricing problem to optimality
at each iteration. This guarantees that the final solution is
optimal whenever there is no solution with a positive reduced
price. The pricing of the αs variables requires evaluating the
corresponding reduced price rs.

rs = −1 +
∑
l∈L

clνlql,s (8)

where the constant −1 comes from the cost coefficient in the
objective (6) and νl is the Lagrangian multiplier of constraint
(7). At each iteration, we have to find a maximum-price
ISet, i.e., a binary vector qs that maximizes rs such that
constraints (3–4) are met, which is an NP-hard problem.

2) Positive Pricing: Solving the pricing sub-problem to
optimality at each iteration is a time-consuming operation
that can be avoided most of the time. Instead of finding
the column with the largest reduced price, we can use any
heuristic procedure to choose any column, e.g., any ISet, with
a positive reduced price. Pivoting this column into the basis
may still bring some increase of the objective function. A
greedy heuristic is an obvious choice for positive pricing, but
at some point, it might fail to find a column with a positive
reduced price. In this case, we have two options.

The first one is to stop at that point. This we call approxi-
mate positive pricing. The problem with this approach is that
we cannot guarantee that the final solution is optimal since
the heuristic may have missed some column with a positive
reduced price.

The second option, which we call exact positive pricing,
is to revert to a more accurate, and hence more complicated
pricing algorithm that guarantees to find a column with a
positive reduced price if it exists. Consequently, if this pricing
algorithm does not find any column with a positive reduced

2A term involved in the simplex algorithm [11]. It represents the marginal
improvement that a column can bring to the objective.



price, we know that we have an optimal solution. We describe
in Section II-E3 the exact positive pricing that we have
developed.

Remarks: In theory, using only optimal pricing usually
needs fewer iterations to converge than the other methods since
it always chooses the column that has the largest potential
to increase the objective at the current solution. This is one
reason why it has been widely used to solve problems related
to LSP [12], [13], [2], [14]. However, the total CPU time
taken by the optimal pricing is actually much longer when the
pricing sub-problem is NP-complete/hard. It has been shown
recently by [15] that approximate positive pricing based on a
greedy heuristic converges very fast to a suboptimal solution.
Unfortunately, it is not clear how close a suboptimal solution
is to the optimum [14] since the greedy algorithm might miss
some columns with a positive price.

3) Our Positive Pricing Algorithm: Our implementation
of the positive pricing involves two algorithms. The first
algorithm is a greedy pricing. The algorithm simply orders the
links in decreasing weights. The link with the largest weight
is first chosen, then the link with the largest possible weight
that is still independent of the chosen one is selected, and
so on until an ISet is constructed. There are many ways to
define those link weights. The most straightforward one is to
use the clνl defined in Eq. (8) as the weights, but we use a
more sophisticated definition taking into account also some
measure of the interference; it usually works better than the
straightforward one. We will explain this more in detail when
we come to a particular example in Section IV-D2.

When this fails to find a suitable column, the procedure
reverts to our second algorithm, the efficient enumeration of
ISets described in Section II-D, until it finds an ISet with a
positive reduced price or fails to do so after enumerating all
the possible ISets. If we want to guarantee the optimality of
the final solution of the column generation algorithm, a full
enumeration is needed to solve the pricing sub-problem exactly
but only in the last iteration and on a limited subset of links.

Although the pricing by enumeration used in the second
algorithm is still a complex task, it can be made quite efficient
due to the following reasons:
• The enumeration can be fast if Q has the divisible

property.
• Apart from the latest iteration, the enumeration only runs

until a column with positive price is identified.
• More importantly, the enumeration is performed only on

the set of links whose price is positive since there is no
advantage in adding a link with zero price when maximiz-
ing the total price of an ISet. Hence the dual degeneracy
may reduce the size of the problem significantly.

Our numerical results show that the suboptimal solution
obtained with only the greedy pricing can be almost optimal
in most cases. When the greedy pricing fails to produce a
column with positive reduced price, we invoke the enumeration
pricing if we are after the exact optimal solution. This is the
third important feature of the LSP: Even though the pricing
problem is hard, it is possible to use a greedy algorithm either

to produce a good approximate solution or to combine it with
an efficient enumeration on reduced set of links to find a
provably optimal solution.

F. Summary

The solution techniques work well for the LSP because the
problem has the following features.

1) It is possible to give an extensive formulation.
2) The resulting problem is a standard LP.
3) A full enumeration of the columns for reasonably large

cases is doable thanks to the divisibe property of Q.
4) Column generation works well even though the pricing

sub-problem is hard for large problems.
5) Using a greedy algorithm as an approximate pricing

leads to a final solution very close to the optimum.
What we want to show in the next section is that there exist
other network design problems that share these features, so
that the techniques proposed for LSP can in principle be used
to solve them efficiently as well. To this end, we will formulate
the problem, show that it has the right structure, exhibit the
pricing, determine an efficient set of weights for the positive
pricing algorithm and develop the numerical tools.

III. NODE ON-OFF SCHEDULING

Densely deployed wireless sensor networks often have more
nodes than needed to cover their deployment area. Therefore
it is possible to activate only a subset of nodes for a certain
time period in order to increase the total coverage time [16],
[17], [18] by saving the energy of the remaining nodes. This
is done by partitioning the node set N into several cover sets3

Mk ∈ N , and turn on each one only for a time tk. We can
optimize the coverage time of the network by maximizing the
sum of all tks. Our technique provides a way of solving these
problems exactly as opposed to the approximate solutions
proposed in [17], [18] for example.

A. Network Model

The energy consumption model is the following. We first
assume that all nodes spend a uniform power P t when they
are on, but the formulation that we will present can handle a
power varying with both node and cover set. We also assume
that each node i is given a total amount of energy Ei initially,
and we denote by E = [Ei]T the vector of energy allocation of
the nodes. We continue using some of the modeling parameters
defined in Sec. II-A and II-C.

Obviously, each cover set has to meet certain coverage
conditions. An example of such conditions is when there is a
number of locations {`i} that have to be covered by the sensors
at all times. In this case, a cover set is a set of sensors such that
for each location `i, there is at least one sensor j such that the
distance d(`i, j) ≤ Rsj where Rsj is the so-called sensing range
of j, i.e., the maximum distance at which a sensor can detect
whatever it is supposed to detect. The extensive form can be
obtained by enumerating all subsets that meet this condition.

3The term cover set should not be confused with the concept of a cover
set for the classical set covering problem



This produces a set of N -dimensional {0, 1} characteristic
vectors qk each representing a cover set Mk, i.e., qi,k = 1 if
i ∈ Mk and qi,k = 0 otherwise. The collection of vectors qs
forms the Q matrix of the problem as described for LSP.

We also define the decision variable tk as the time that
cover set k is used and t = [tk] as the schedule vector. We
first consider a simpler case where connectivity is not a issue.
Then we extend the problem formulation to take connectivity
into account.

B. On-Off Schedule for Coverage Only

This problem assumes that nodes spend most of their energy
to perform their tasks, e.g., monitoring, so that the energy spent
for communications can be neglected.

max
t�0

∑
Mk∈N

tk (9)

(ω) P t
∑
Mk∈N

qktk � E (10)

where ω is the Lagrangian multipliers (vector). We have ω �
0. Note that this is a standard LP just as for LSP.

C. On-Off Schedule for Coverage and Connectivity

In addition to simply covering an area, a wireless sensor
network has to transmit the collected information to certain
destinations, e.g., the gateways. Therefore, each cover setMk

must meet certain connectivity conditions. A simple example
is to require a cover set to be connected given a transmission
range Rti for a node i. More complicated examples may
involve a flow rate vector λ = [λf ]f∈F for a certain flow
set F which has to be feasible for a given cover set Mk.

No matter what connectivity conditions are involved, a
node will consume a communication power P c to maintain
connectivity. The following is a possible formulation of P c

for node i in cover set Mk.

P ci,k =
∑
j 6=i

[
Pi,jx

k,f
i,j

ci,j
+
Prxx

k,f
j,i

cj,i

]

where xk,fl is the load produced by flow f on link l during
tk, ci,j is the rate of link (i, j), Pi,j is the transmit power
of link (i, j) (which enables node i to have, for example, a
transmission range of Rti), and Prx is a fixed receiving power
identical for all nodes. It is straightforward to see that, as the
ratio between a load and a link rate represents the time fraction
during which a link is active, the two terms in the expression
indicate the total transmit and receiving power, respectively,
during tk.

The constraint (10) now becomes

(ωi)
∑
Mk∈N

Pi,kqi,ktk ≤ Ei ∀ i ∈ N (11)

where Pi,k = P ti,k +P ci,k. Note that, P ti,k extends the constant
P t by considering it as a function of both node and cover set.
We have ωi ≤ 0,∀ i ∈ N .

D. Pricing and Weight Choice

First, the reduced price of a column corresponding to a tk
variable is given by

rk = 1 +
∑
i∈N

ωiPi,kqi,k

where the constant 1 comes from the cost coefficient in the ob-
jective (9) and ωi is the Lagrangian multipliers of constraints
(10) or (11). An optimal pricing requires the solution of a
minimum cover with node weight −ωiPi,k for a cover set
Mk, whereas a positive pricing only needs to identify some
cover set Mk whose rk is positive. The column generation
terminates if rk ≤ 0 for all off-basis columns.

Second, the pricing algorithms, both greedy and
enumeration-based, can take advantage of specific geometrical
property of individual sensor coverage regions. For example,
if they are convex, e.g., circles, an efficient data structure
based on a planar graph can be used [17].

Third, although the hard matrix Q with columns qk does
not have the divisible property described in Section II-D, its
bit-wise complement matrix Q does and we can implicitly
enumerate Mk by actually enumerating its complement set.

Finally, it is very unlikely that all the N constraints (11) are
met with equality unless nodes are regularly distributed and
they share the same power consumption profile. Therefore, the
dual degeneracy can also be used. In this case, a node i with
ωi = 0 can always be chosen to construct a cover set Mk

since it does not decrease the reduced price rk. Such a node
can always be included in Q and thus can always be removed
from Q. Because we are enumerating Q instead of Q, this
means that the enumeration will be done on a smaller set and
will thus be made faster.

E. Numerical Results

In this section, we use several examples to demonstrate the
efficiency of our algorithm. The numerical results presented
here and in Section IV-E are produced by tools we developed.
The tools are programmed in C++ and call the APIs of
CPLEX [7] to solve an LP or IP in the case that an optimal
pricing is required.

We have a 160× 160 m2 area to be covered by a wireless
sensor network. In this area, we have 441 targets organized in a
grid with a separation of 8 m between targets. In each scenario,
we randomly deploy N sensors with N = 100, 200, 400 or
800. The sensing range Rsi for each sensor is a Gaussian
random variable with identical mean and the same standard
deviation of 5 m. For each sensor i, Rti = 1.5Rsi . A cover
must have the following properties:

1) All the targets can be sensed and
2) It forms a connected sub-network.

For the energy model, we assume that any node in an active
cover set consumes a power proportional to the square of the
sensing range. Without loss of generality, we take E = 1.

In order to show the advantage of our positive pricing
technique, we first compare the computation times of two
algorithms involving an optimal pricing and an exact positive



pricing respectively. We compute the maximum coverage
time of a 200-node network using on-off scheduling. The
computation is done for different mean sensing ranges from
20 m to 78 m with a step size of 2 m. The results in terms of
computation times are shown in Fig. 1. It is obvious that the

20 30 40 50 60 70 80

100

101

102

103

Mean sensing range (m)

C
P
U
 
t
i
m
e
 
(
s
e
c
o
n
d
)

200 nodes (Positive Pricing)
200 nodes (Optimal Pricing)

Fig. 1. Comparison between optimal pricing and positive pricing.

optimal pricing is far slower than the positive pricing. This
is not a surprise because the optimal pricing needs to solve
an NP-hard connected sensor coverage problem [19] in each
column generation iteration.

Using our tool that is based on the positive pricing described
in Section III-D, we compute the maximum coverage times
for networks of 100, 200, 400, and 800 nodes. The results
for both coverage times and computation times are reported
in Fig. 2. It is interesting to see that the coverage time is not
a monotonic function of the mean sensing range under our
model. On one hand, increasing the sensing range may result
in more cover sets and less nodes in each cover set; this can
potentially improve the coverage time. On the other hand, the
power consumption is increased with the sensing range, this
contributes negatively to the coverage time. Therefore, one has
to be careful when tuning the power to vary the sensing (or
transmission) range. Our tool provides a convenient way to
study the tradeoffs involved in the design issues for very large
networks.

IV. EXTENSION TO NONLINEAR OBJECTIVES

Network optimization problems may sometimes involve a
nonlinear (but concave in the case of maximization) objective
U(y). In this section, we first revisit the column generation
method of Section II-E to see how it can be extended to deal
with a nonlinear objective of this kind, then we describe a
specific problem that is amenable to this solution technique.

A. Column Generation for Nonlinear Objectives

One possible approach to nonlinear objectives is the non-
linear column generation presented in [2]. It combines La-
grangian decomposition with column generation and requires
solving two nonlinear optimizations in each iteration to obtain
upper and lower bounds. The pricing sub-problem has to be

20 30 40 50 60 70 80
0

50

100

150

200

250

Mean sensing range (m)

M
a
x
i
m
u
m
 
c
o
v
e
r
a
g
e
 
t
i
m
e 100 nodes

200 nodes

400 nodes

800 nodes

(a)

20 30 40 50 60 70 80

100

101

102

Mean sensing range (m)

C
P
U
 
t
i
m
e
 
(
s
e
c
o
n
d
)

100 nodes
200 nodes
400 nodes
800 nodes

(b)

Fig. 2. Coverage Time (a) and computation time (b) as functions of sensing
range and network size.

solved to optimality and, as we explained in Section II-E1,
the exact pricing used in [2] does not scale well to large
problems. While it is true that the positive pricing algorithm
scales well, combining it with the Lagrangian decomposition
is not an efficient approach, as it does not produce an upper
bound on the value of the objective.

Our approach is based on the sequential linear programming
(SLP), also known as the Frank-Wolfe method [20]. This is
particularly useful for problems with a nonlinear objective
U(y) and linear constraints Ay = b. At each iteration, it
only needs to solve a linear program to compute a feasible
direction and then to calculate the maximum in this direction
using a line search algorithm. The main steps of the Frank-
Wolfe method are as follows:

1) Find an initial feasible solution y0.
2) At iteration i, let yi be the current solution. A lin-

earized version of the problem with the objective func-
tion 〈∇U(yi), (y − yi)〉 and the original constraints is
solved. This produces a vector y∗i that is a vertex of the
domain and a direction di = y∗i − yi.

3) Find, for τi ≥ 0, the step size in the direction di,
by solving the one-dimensional nonlinear optimization
maxτi

U(yi + τidi).
We now explain how the Frank-Wolfe method can be used



together with our column generation technique efficiently.

B. Line Search

Given a direction from the current solution, we must find
the maximum of the function in that direction. This is a one-
dimensional nonlinear optimization problem. In our imple-
mentation, the line search is done with the golden section
method [20] but any one-dimensional minimization technique
could be used. The important point is that it is stopped before
optimality when there is a sufficient decrease of the objective,
based on the two following rules:

1) Armijo rule:
U(yi + τidi)− U(yi) ≥ c1τi〈∇U(yi),di〉.

2) Curvature condition:
|〈∇U(yi + τidi),di〉| ≤ c2|〈∇U(yi),di〉|

with 0 < c1 < c2 < 1.

C. Direction Calculation

This is a standard LP where the objective function is now
〈∇U(y),d〉 subject to the constraints Ay = b. This can be
solved by any one of the techniques explained in Sections II-D
and II-E.

1) Steepest Direction: In principle, the Frank-Wolfe
method requires that the direction-finding problem be solved
at optimality at each iteration. The LP can be solved with
either the optimal or the exact positive pricing technique since
they both produce an optimal solution. Calculating an optimal
solution finds the vertex that produces the largest increase in
the neighborhood of the current solution and is similar to a
steepest descent. In general, this may need fewer iterations
but may be quite slow, especially if the LP has a hard pricing
sub-problem.

2) Feasible Direction: We can speed up the direction
calculation if we just compute any feasible direction where the
function increases, i.e., any direction with a positive projection
on the gradient. This can be done by our positive pricing
algorithm.

A feasible direction can be computed with the positive
pricing algorithm where we do not necessarily run the proce-
dure to termination. The idea is that the computation-intensive
enumeration step is not invoked as long as we can make a
sufficiently large progress with only the greedy pricing. This
is equivalent to the two conditions

〈∇U(yi),di〉
‖∇U‖‖d‖

≥ δ > 0 (12)

‖yi − yi−1‖
‖yi‖

≥ θ > 0 (13)

for some given parameters δ and θ. Eq. (12) states that
the current direction is sufficiently close to the gradient and
Eq. (13) that the solution vector has changed by a sufficiently
large amount. If neither condition holds, the enumeration-
based column generator is used. This insures the eventual
convergence to optimality since no feasible direction with an
increasing value of the objective will be left out.

A formulation of the first-order optimality condition [20] is
that at an optimal point, there is no feasible direction with a
positive projection on the gradient. In our case, the algorithm
terminates if the projection of the direction on the gradient is
small enough,

〈∇U(yi),di〉
‖∇U‖‖d‖

≤ δ′ (14)

for 0 < δ′ � 1. The method falls in the class of feasible
direction techniques. At each iteration, a small move in the
direction that has been computed remains feasible and the
direction is such that the function is not decreasing in that
direction. Like all feasible direction methods, this one is
also susceptible to jamming where the algorithm does not
make any progress even though the current point may be far
from the optimal solution. We have not observed this in our
numerical work, as we have computed the norm of the first-
order optimality conditions to guarantee that the final solution
was in fact close to the optimum.

D. Nonlinear SRPR

The problem presented in this section is an extension of the
LSP problem: it jointly optimizes over scheduling, routing, and
flow rate allocation. It differs from the SRPR problem [21],
[3] in that it has a nonlinear objective function that computes
a solution which is proportionally fair to all the flows.

1) Network Model and Problem Formulation: In addition
to the PHY and MAC layer models described in Section II-A
and II-C, we need to model the network layer. We define a flow
f ∈ F as a source-destination pair (fs, fd) for fs, fd ∈ N .
Flow f has a rate λf at which the source is generating traffic.
Let λ = [λ1, · · · , λF ] be the flow rate vector. For convenience,
we define the node-flow incidence vector df = [dfi ]

T
i∈N\{fd}

for each node i and flow f as

dfi =

{
1 if i = fs

0 otherwise.
(15)

In general, there is not always a direct link between fs
and fd so that the traffic has to be routed through some
intermediate nodes. For this, we also define the standard node-
arc incidence matrix Af = [afi,l]i∈N\{fd},l∈L, where for each
node i and link l = (o(l), d(l)), we have

afi,l =


+1 if i = o(l)
−1 if i = d(l)
0 otherwise.

(16)

The dependence on f is useful when one wants to prevent
certain flows from using some links. This in turn leads to a
set of decision variables xfi,j which are the link loads defined
in Section II-C. We denote by xf a vector of link loads for f
and by x the concatenation of all xf s.

The proportional fairness problem is shown in the following.
The maximization is explicitly taken with respect to the flow
rate allocation vector λ, link load allocation vector x, and link



scheduling vector α.

max
λ,x,α�0

∑
f

log λf (17)

(µfi ) Afxf ≥ λdf ∀ f ∈ F (18)

(νl) cl
∑
s∈I

ql,sαs ≥
∑
f∈F

xfl ∀ l ∈ L (19)

(ζ)
∑
s∈I

αs ≤ 1 (20)

where we have put the Lagrangian multipliers correspond-
ing to each constraint in parenthesis. Constraint (18) is the
multicommodity flow conservation equation, the rest is just
the link scheduling problem defined in Section II-C. In this
formulation, we have µfi ≥ 0, νl ≥ 0 and ζ ≤ 0.

2) Pricing and Weight Selection: The reduced price of a
potential column αs is

rs = ζ +
∑
l∈L

clνlql,s (21)

where νl and ζ are the Lagrangian multipliers of constraints
(19) and (20). Therefore, the positive pricing needs to identify
an ISet s whose rs is positive, and the column generation
terminates if rs ≤ 0,∀s ∈ I.

Other than a slight different in the pricing formula, the pric-
ing algorithm is the same as that presented in Section II-E3.
First, the design of the greedy pricing should exploit the
structure of the interference constraints, rather than simply
relying on the link price clνl. For example, the interference
constraints are sometimes defined by a conflict graph [12] in
which a vertex represents a link and an edge joints two vertices
if the corresponding links conflict with each other. In this case,
the link weight used in the greedy heuristic should involve,
in addition to clνl, the vertex degree in the conflict graph.
Secondly, the Q matrix is divisible under commonly used
interference constraints; this makes the enumeration easier
whenever it is needed. Finally, since it is rare that a load vector
x saturates all links whose load is positive, dual degeneracy
almost always happens due to the complementary slackness.
As we explained in Section II-E3, the positive pricing can be
very efficient in this case.

E. Numerical Results

In this section, we report two sets of results to show how our
algorithm can handle relatively large networks in reasonable
computation time. The first and second cases involve two
networks with 30 and 60 nodes randomly deployed in areas of
36×36 m2 and of 56×56 m2, respectively. For each network,
we require every node to send a flow to the node in the center,
which represents the gateway. This is a typical scenario for
wireless mesh or sensor networks. For radio propagation, the
channel gain G between two points separated by distance d is
assumed to be given by Fl(d/d0)−η , where d0 is the close-
in reference distance, Fl is the shadowing and fading gain
and η is the path loss exponent. We assume d0 = 0.1 m,
Fl = 1,∀ l ∈ L and η = 3. The link rate cl is normalized

−36 −34 −32 −30 −28 −26 −24 −22
−110

−108

−106

−104

−102

−100

−98

P
tx
 (dBm)

O
p
t
i
m
a
l
 
o
b
j
e
c
t
i
v
e
 
v
a
l
u
e

Enumeration + MINOS
Column generation + Frank−Wolfe

(a) Rand30 objective values.

−36 −34 −32 −30 −28 −26 −24 −22

101

102

103

104

P
tx
 (dBm)

C
P
U
 
t
i
m
e
 
(
s
e
c
o
n
d
)

Enumeration + MINOS
Column generation + Frank−Wolfe

(b) Rand30 computation time.

−32 −30 −28 −26 −24 −22 −20 −18 −16 −14

−275

−270

−265

−260

−255

−250

−245

−240

P
tx
 (dBm)

O
p
t
i
m
a
l
 
o
b
j
e
c
t
i
v
e
 
v
a
l
u
e

Column generation + Frank−Wolfe (no time constraint)
Column generation + Frank−Wolfe (1800 seconds)

(c) Rand60 objective values.

−32 −30 −28 −26 −24 −22 −20 −18 −16 −14
102

103

104

105

P
tx
 (dBm)

C
P
U
 
t
i
m
e
 
(
s
e
c
o
n
d
)

Column generation + Frank−Wolfe (no time constraint)
Column generation + Frank−Wolfe (1800 seconds)

(d) Rand60 computation time.

Fig. 3. Comparison between column generation and enumeration (a),(b) and
between column generations with different time constraints (c),(d).



to 1 for all links and the corresponding SINR threshold is set
to β = 6.4dB. We also assume that all links have the same
transmit power Ptx and our computations are done for different
values of this power.

In the first case for the 30-node network, we compare
the efficiency of two methods by computing the objective
values as a function of the transmit power. The first method is
based on a complete enumeration of all the ISets as described
in Section II-D which is then solved using the commercial
nonlinear solver MINOS [8]. The second method is the our
solution technique based on column generation. Fig. 3 (a)
shows the optimal value of the objective function as a function
of the power and Fig. 3 (b) the CPU time required to obtain
these solutions. Our algorithm is significantly faster than the
commercial solver. Note that the commercial solver in unable
to produce solutions for large values of the power.

In the second case, for the 60-node network, we have used
two variants of the column generation algorithm. In the first
one, we let the computation run until an optimal solution is
found while in the second case, we put a 30 minutes limit on
the total CPU time. As we can see in Fig. 3 (c) and (d), the
difference in the final value of the objective function is always
very small and the two solution are often identical. This shows
that we can get nearly optimal solutions in reasonable time for
large networks.

V. CONCLUSION

We revisit a technique based on column generation in this
paper. This technique has been shown to be efficient in dealing
with a cross-layer design problem with linear objectives [3].
By analyzing the problem structure that makes this technique
efficient, we are able to extend it to solve other problems.
We first apply this technique to the node on-off scheduling
problem, in which case we can handle problems with hundreds
of nodes easily. We also extend this technique to address
cross-layer design problems with nonlinear objectives. The
numerical results show that our algorithm can solve problems
that a commercial solver is unable to tackle.

We believe that the same approach can be applied to solve
other resource allocation problems. For example, we have been
able to formulate a type of relay or gateway placement problem
using the extension formulation and have also derived the
pricing formula for it. Due to the page limitation, we leave
these results for future work.

REFERENCES

[1] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Trans.
on Information Theory, vol. 46, no. 2, pp. 388–404, 2000.

[2] M. Johansson and L. Xiao, “Cross-Layer Optimization of Wireless Net-
works Using Nonlinear Column Generation,” IEEE Trans. on Wireless
Communications, vol. 5, no. 2, pp. 435–445, 2006.

[3] J. Luo, C. Rosenberg, and A. Girard, “Engineering Wireless Mesh Net-
works: Joint Scheduling, Routing, Power Control and Rate Adaptation,”
Submitted to IEEE/ACM Transactions on Networking, June 2008.

[4] D. Villeneuve, J. Desrosiers, M. Lübbecke, and F. Soumis, “On Compact
Formulations for Integer Programs Solved by Column Generation,”
Annals of Operations Research, vol. 139, no. 1, pp. 375–388, 2005.

[5] G. Brar, D. Blough, and P. Santi, “Computationally Efficient Scheduling
with the Physical Interference Model for Throughput Improvement in
Wireless Mesh Networks,” in Proc of the 12th ACM MobiCom, 2006.

[6] T. Moscibroda, Y. Oswald, and R. Wattenhofer, “How Optimal are
Wireless Scheduling Protocols?” in Proc. of the 26th IEEE INFOCOM,
2007.

[7] “ILOG CPLEX 11.0.” [Online]. Available: http://www.ilog.com/
products/cplex/

[8] “MINOS 5.5.” [Online]. Available: http://www.sbsi-sol-optimize.com/
asp/sol product minos.htm

[9] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, “Impact of Interference
on Multi-hop Wireless Network Performance,” in Proc. of the 9th ACM
MobiCom, 2003.

[10] A. Karnik, A. Iyer, and C. Rosenberg, “Throughput-Optimal Config-
uration of Wireless Networks,” IEEE/ACM Trans. on Networking (to
appear), 2008.

[11] G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization.
New York: Wiley, 1988.

[12] P. Björklund, P. Värbrand, and D. Yuan, “Resource Optimization of
Spatial TDMA in Ad Hoc Radio Networks: A Column Generation
Approach,” in Proc. of the 22th IEEE INFOCOM, 2003.

[13] J. Zhang, H. Wu, Q. Zhang, and B. Li, “Joint Routing and Scheduling
in Multi-radio Multi-channel Multi-hop Wireless Networks,” in Proc. of
the 24th IEEE INFOCOM, 2005.

[14] A. Capone and G. Carello, “Scheduling Optimization in Wireless Mesh
Networks with Power Control and Rate Adaptation,” in Proc. of the 3rd
IEEE SECON, 2006.

[15] M. Cao, X. Wang, S.-J. Kim, and M. Madihian, “Multi-Hop Wireless
Backhaul Networks: A Cross-Layer Design Paradigm,” IEEE J. Sel.
Areas Commun., vol. 25, no. 4, pp. 738–748, 2007.

[16] S. Slijepcevic and M. Potkonjak, “Power Efficient Organization of
Wireless Sensor Networks,” in Proc. of IEEE ICC, 2001.

[17] P. Berman, G. Calinescu, C. Shah, and A. Zelikovsky, “Power Efficient
Monitoring Management in Sensor Networks,” in Proc. of IEEE WCNC,
2004.

[18] M. Cardei, M. Thai, Y. Li, and W. Wu, “Energy-Efficient Target
Coverage in Wireless Sensor Networks,” in Proc. of the 24th IEEE
INFOCOM, 2005.

[19] H. Gupta, S. Das, and Q. Gu, “Connected Sensor Cover: Self-
Organization of Sensor Networks for Efficient Query Execution,” in
Proc. of the 4th ACM MobiHoc, 2003.

[20] D. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, Mas-
sachusetts: Athena Scientific, 1999.

[21] J. Luo, A. Iyer, and C. Rosenberg, “Throughput-Lifetime Tradeoffs in
Multihop Wireless Networks under a Realistic Interference Model,” in
Proc. of the 45th Allerton Conference (journal version submitted to
IEEE/ACM Trans. on Networking), 2007.


