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Abstract—In this paper, we investigate the impact of limited
backhaul capacity on user scheduling in the context of a hetero-
geneous network comprising a macro base station overlaid with
small-cells. Under a global proportional fairness (PF) criteria,
we show that this limited capacity has a fundamental impact on
user scheduling. When user association and channel allocation
are given, like in the infinite-capacity backhaul case, the global
PF user scheduling problem can be decomposed into a set of
independent local PF user scheduling problems. However, unlike
the case with infinite backhaul where the local PF scheme is
equivalent to giving equal time to each user, a local PF scheme
with finite backhaul can be of one of three types. We completely
characterize these three types and the conditions under which
to use them. The results show that a backhaul-aware scheduling
scheme is simple to implement and necessary to obtain the best
performance.

I. INTRODUCTION

Heterogeneous Networks (HetNets) comprise a set of low-
power base stations (BSs), called small cells, overlaying the
existing macro cellular layer [1]. Small cells are connected
to the macro infrastructure via wired or wireless backhaul
links. This shift from the existing homogeneous structure to a
hierarchical heterogeneous architecture is seen as an important
innovation required to obtain a 30-fold increase in capacity in
LTE cellular networks [2].

The introduction of the new overlapping layer of small
cells brings in multiple challenges including User Schedul-
ing (US), Resource Allocation (RA), User Association (UA),
and Transmission Coordination (TC). If well designed, these
processes can improve the system performance significantly. A
number of works including [3], [4] and [5] have studied these
processes in great detail and have proposed optimal or quasi-
optimal schemes. For example, [5] presents an optimal user
association and user scheduling scheme whereas [4] presents a
jointly optimal user scheduling, user association and resource
allocation scheme.

Most of the studies on small cells in the literature suffer
from one key limitation. They do not consider the effect of
backhaul’s capacity limitation on system performance, and
hence are limited in scope to scenarios with sufficiently large
backhaul link capacities. Such an assumption could be justified
in the existing homogeneous cellular networks since the cost of
backhauling is a small component of the overall cost and hence
we can generally expect them to be equipped with sufficiently
high backhaul capacity. For small cells however, the picture
is very different. The cost of backhauling is a significant part
of the total Capital Expenditure (CAPEX) and Operational

Expenditure (OPEX), in some cases exceeding the cost of
the small cell BS equipment [6]. It is thus desirable that the
backhauling cost for small cells is kept low, which in turn
limits the capacity of the installed links. Hence, backhaul links
can sometimes be the bottleneck to the performance of small
cells. The purpose of this study is to specifically study HetNets
where the backhaul links have finite capacities. Our main result
is to show that this limitation has a fundamental impact on how
user scheduling should be performed.

More precisely, we consider a region covered by one macro
cellular area with one macro base station (MBS) with infinite
capacity backhaul and a number of small cells connected to the
MBS via wired backhaul links of limited capacity. We assume
that the resource allocation and the user association are given
and that each base-station (MBS or small cell) schedules its
UEs independently from the other base stations. Our objective
is to schedule the users so as to be proportionally fair in a
global sense (i.e., over all base stations).

Our main contributions can be summarized as follows.
• Under the assumption of infinite-capacity backhaul links,

it was shown in [4] that the global proportional fair
(PF) user scheduling problem can be decomposed into
a set of decoupled independent local PF user scheduling
problems and that the local PF is equivalent to an equal-
time scheduling scheme. When the backhaul links have
finite capacities, we show that we can still decouple the
global problem into independent local PF schemes, but
the equivalence between local PF and the equal-time
scheduling does not always hold.

• In order to be globally PF in a system with finite back-
haul, we show that each small cell j needs to schedule
its users in a way which depends on how its backhaul
capacity Cj compares to two critical values c∗j and C∗j
that are specific to the realization that it sees. We give
simple closed-form expressions to compute c∗j and C∗j . If
Cj ≤ c∗j then local PF is equivalent to equal-throughput
scheduling, while if Cj ≥ C∗j it is equivalent to equal-
time scheduling. Otherwise, local PF scheduling can be
computed easily by solving two non-linear equations with
two variables.

• Using numerical results, we quantify the impact of the
small cell backhaul capacity on the system performance
and the relative difference in performance between the
optimal scheduling and the scheme which is optimal
when the backhaul capacities are infinite.
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Fig. 1. Our system.

The rest of this paper is organized as follows. In Section II,
we present the system model. Section III presents the opti-
mization problem as well as the main analysis. Section IV
contains numerical results and Section V concludes the paper.

II. SYSTEM MODEL

We consider an OFDM-based HetNet system comprising
one macro base station (MBS), X operator-deployed small
cells (e.g., pico base stations (PBS)) and N user equipments
(UE), all located within a given macro-cell (see Fig. 1). In
a given HetNet, let MBS be represented as node 0, P be
the set of small cells and N be the set of user equipments.
Each small cell j ∈ P is connected to the MBS via a wired
backhaul of capacity Cj . We assume that the capacity of the
backhaul infrastructure between the MBS and the backbone
is infinite. We focus on the downlink of a given HetNet and
assume that all users are active, i.e., there exists a downlink
flow from the MBS (source) to each UE (destination). We
assume that the users are greedy and hence flows are not
throughput constrained. Let MBS have a power budget of
PMBS and each of the small cells have a power budget
of PPBS . We do not consider a time-domain transmission
coordination among the BSs1 and assume that all the BSs
transmit all the time. We assume that the system has been
allocated M OFDM subchannels. We consider a channel
allocation scheme called Orthogonal Deployment (OD) [1],
where K subchannels are allocated to the small cells and the
remaining M − K subchannels are allocated to the MBS.
There is another type of channel allocation scheme called
the Co-channel Deployment (CCD), where all M subchannels
are allocated to all BSs. In the absence of explicit inter-BS
coordination for interference management, OD is shown to
perform much better than CCD [7]. We will thus restrict our
study to OD. The results, however, are also true for CCD.

In order to simplify our formulations, we make the follow-
ing assumptions: [A1] A BS transmits on all the subchannels
allocated to it; [A2] Power allocated to a given BS is equally
divided among all the allocated subchannels with Pj represent-
ing the per-subchannel power of BS j; [A3] Channels are flat,
i.e., the channel gains across different subchannels between
a BS and a UE are equal. Let, Gji represent the channel
gain between BS j and UE i, assumed to be known either
by measurements or via a channel model. As discussed in
[7], this assumption allows us to reduce a time and frequency

1Base station (BS) refers to both the MBS and the small cells.

domain scheduling to just a time domain scheduling, where a
BS allocates all of its subchannels to one UE at a given time.

A. Physical interference model and link rates
Since the locations of the MBS and the small cells are

fixed, a random realization of N user positions, with a given
channel model can be used to generate a random instance
of the channel gain matrix G = (Gji), which we call a
realization of the network. This matrix captures the distance
dependent path-loss as well as the random shadowing between
the transmit-receive pairs. Now, for a given realization G, for
a given PMBS and PPBS , the SINR between BS j and UE i
on each subchannel, represented as γji, can be determined as
follows. For all j ∈ P ∪ {0} and for all i ∈ N , we have2

γji =
PjGji

N0 + 1{j∈P}
∑
j′∈P:j′ 6=j Pj′Gj′i + Iout

(1)

where, Pj = 1{j=0}
PMBS

(M −K)
+ 1{j∈P}

PPBS
K

(2)

Iout is the interference coming from BSs in the nearby
HetNets (macro cells), assuming that a reuse factor of 3 is
employed among the macro cells and that the nearby HetNets
have identical channel allocation scheme and transmit power
budget. There is a function f(.) that maps SINR to data rate
which defines the maximum supportable rate per subchannel
from BS j to UE i. We do not make any a priori assumptions
on the exact nature of this rate function. Hence, the maximum
supportable rate Rji is given as

Rji = 1{j=0}(M −K)f(γji) + 1{j∈P}Kf(γji) (3)

III. OPERATION PROBLEM: SCHEDULING UNDER LIMITED
BACKHAUL CAPACITIES

A. Problem Formulation
For a given realization G, and given backhaul capacities

(C = (Cj)j∈P ), we assume that the channel allocation
parameter K as well as the rate-function f(.) are given.
In this case, the Rji’s can be computed a priori as input
parameters to the problem using (1), (2) and (3). Even though
our model assumes that the value of K is given, it is important
to point out that choosing a good value of K is important
(and in general not trivial) [7]. We also assume that the user
association is given, with xji = 1 representing the fact that
user i is associated to BS j and xji = 0 representing otherwise.
We will assume that a user associates to only one BS, i.e.,
xji ∈ {0, 1} and

∑
j∈{0}∪P xji = 1. Also, we assume that

the user association scheme guarantees that each UE has a
non-zero rate to its BS:

Rji > 0 ∀i ∈ N ,∀j ∈ {0} ∪ P with xji = 1 (4)

We intend to schedule the users in a global PF fashion. In [8],
it was shown that global PF can be achieved by maximizing
the following objective function:

∑
i∈N log(λi), where λi is

the throughput offered to user i. Let us define 0 ≤ αji ≤ 1
as the fraction of time for which BS j transmits to UE i.

2Indicator function 1{A} = 1 if A is true, 0 otherwise.



Then, we want to find the optimal values of the αji’s so as
to maximize our objective function, i.e., we want to solve the
following problem.

[P] max
(λi),(αji)

∑
i∈N

log(λi)

subject to: λi =
∑

j∈P∪{0}

Rjiαji,∀i ∈ N (5)

∑
i∈N

Rjiαji ≤ Cj , ∀j ∈ P (6)∑
i∈N

αji ≤ 1, ∀j ∈ P ∪ {0} (7)

αji ≤ xji, ∀i ∈ N ,∀j ∈ P ∪ {0} (8)
αji ≥ 0, ∀i ∈ N ,∀j ∈ P ∪ {0} (9)

(5) relates user schedules to throughputs, (6) is the con-
straint due to finite backhaul capacities, and (7) represents the
scheduling constraints at each BS. (8) is the user-association
constraint. We call [P] the global PF scheduling problem. It is
well-known that the proportional fairness scheme maximizes
the Geometric Mean (GM) throughput |N|

√∏
i∈N λi, which

we take as our key performance metric.
Let us define Aj as the set of UEs associated to BS j ∈

P ∪ {0}, i.e., Aj = {i ∈ N : xji = 1}. In [4], Fooladivanda
and Rosenberg have shown that the following properties hold
for [P] if the backhaul capacities are unlimited (i.e., if (6) is
removed).
• Decomposability: The global PF problem [P] can be

decoupled into a set of X + 1 independent local PF
problems.

• Equal-time equivalence: A local PF scheduling at BS j is
equivalent to an equal-time scheduling where each user
i ∈ Aj is allocated 1

|Aj | fraction of time.
We want to see whether this remains valid under limited
backhaul capacities, and if not, characterize the nature of the
optimal scheduling under limited backhaul.
B. Decomposition

First we will define a set of X + 1 independent local PF
optimization problems (one per BS). For the MBS, we define:

[P0
Local] max

(α0i)i∈A0

∑
i∈A0

log(R0iα0i) s. t.
∑
i∈A0

α0i ≤ 1;

α0i ≥ 0, ∀i ∈ A0

For small cell j ∈ P , we define:

[Pj
Local(Cj)] max

(αji)i∈Aj

∑
i∈Aj

log(Rjiαji) s. t.

∑
i∈Aj

Rjiαji ≤ Cj (µj) (10)

∑
i∈Aj

αji ≤ 1 (ζj) (11)

αji ≥ 0, ∀i ∈ Aj (lji) (12)

where µj ≥ 0, ζj ≥ 0 and lji ≥ 0 are the dual-variables, asso-
ciated with the backhaul limitation constraint, the scheduling

constraint, and the non-negativity constraint respectively. The
log function in the objective is defined only for strictly positive
values of αji.

The following proposition establishes that it is indeed possi-
ble to decompose the global problem [P] into the above stated
local problems and hence decomposability holds even with
backhaul capacity limitations.

Proposition 1: For a given G, a given user association
satisfying (4) and hence a given set of users Aj associated
to each BS j, [P] can be decomposed into [P0

Local] and
[Pj

Local(Cj)] for j ∈ P and hence optimal schedules to these
local problems solve the global problem [P] to optimality.

Proof: For UE i ∈ Aj for j ∈ {0} ∪ P , we can combine
(5) and (8) to obtain λi = α(ji)iR(ji)i where (ji) is the BS
to which i is associated, i.e. x(ji)i = 1. Also, if a solution
α = (αji,∀i ∈ N ,∀j ∈ {0}∪P) is feasible, then (8) requires
that we have αji′ = 0 for all i′ 6= Aj . This allows us to
remove all constraints that couple any two i, i′ ∈ N such that
(ji) 6= (ji′). The objective can be rewritten in the separable
form:

∑
j∈{0}∪P

∑
i∈Aj

log(αjiRji). For i, i′ ∈ A0, the only
coupling constraint is (7) and for i, i′ ∈ Aj (where j ∈ P),
there are two coupling constraints (6) and (7). Thus we achieve
the stated decomposition.
[P0

Local] is a simple unweighted proportional fair scheduling
problem that is known to have a solution α0i = 1

|A0| as long as
R0i > 0 for all i ∈ A0 (see (See [4], [9])). In other words, the
MBS schedules on equal-time basis. Note that if the backhaul
capacity of the MBS was not infinite, Proposition 1 would
not be true in general as there would be a strong coupling
constraint due to that capacity since all traffic is routed through
the MBS.

Next, we focus on one of the small cells j and characterize
the optimal scheduling of [Pj

Local(Cj)].

C. Analysis of [Pj
Local(Cj)]

We first show an important property of the problem
[Pj

Local(Cj)] as follows.
Proposition 2: If Cj > 0, there exists a unique optimal

solution to [Pj
Local(Cj)] with αji > 0 for all i ∈ Aj .

Proof: By the definition of log function, the optimal
solution, if it exists, needs to satisfy αji > 0 for all i ∈ Aj .
Note that, (4) makes sure that a UE i is associated to BS j
only when Rji > 0. Also, if Cj > 0, we can easily show
that there exists some αji > 0 for all i ∈ Aj , such that
(10) and (11) are feasible. In other words, the set of feasible
solutions with αji > 0 for i ∈ Aj is non-empty and hence
an optimal solution with αji > 0 for i ∈ Aj always exists
if Cj > 0. Since the problem involves the maximization of a
strictly concave function over a convex set, there is a unique
optimal solution [10].

The Lagrangian function of the problem can be defined as
follows.

L(αj ;µj , ζj , lj) = −
∑
i∈Aj

log(αji) + µj(
∑
i∈Aj

Rjiαji − Cj)

+ ζj(
∑
i∈Aj

αji − 1)−
∑
i∈Aj

ljiαji (13)



where αj and lj are respectively the vectors comprising of all
αji and all lji for i ∈ Aj . The dual-problem that solves the
local problem [Pj

Local(Cj)] is given as follows.

max
µj≥0,ζj≥0,lj≥0

min
αj≥0

L(αj ;µj , ζj , lj)

We can obtain the Karush-Kuhn-Tucker (KKT) conditions
[10], necessary for optimality, as follows.

∂L

∂αji
= 0 =⇒ αji =

1

µjRji + ζj − lji
∀i ∈ Aj (14)

ζj(
∑
i∈Aj

αji − 1) = 0 (15)

µj(
∑
i∈Aj

Rjiαji − Cj) = 0 (16)

ljiαji = 0, ∀i ∈ Aj (17)
µj ≥ 0; ζj ≥ 0; lj ≥ 0; (10); (11); (12);

(14) are the first-order necessary conditions for optimality.
(15), (16) and (17) are the so-called complementary-slackness
conditions. Since the primal problem involves maximization of
a concave function over a convex set, any tuple of primal and
dual variables ((αji)i∈Aj

, µj , ζj , (lji)i∈Aj
) that satisfies all of

the KKT conditions is optimal [10]. Also, using Proposition 2,
such a solution is unique. Moreover, since the optimal solution
is known to satisfy αji > 0, we have lji = 0 for all i ∈ Aj
from (17). We thus do not mention the dual variables lj in
the rest of the analysis, as they should always be zero for
optimality. We can also rewrite the first order condition (14)
as

αji =
1

µjRji + ζj
∀i ∈ Aj (18)

It is also useful to observe that the optimal dual variables
obey one of the three conditions: (µj = 0, ζj > 0), (µj >
0, ζj = 0), and (µj > 0, ζj > 0). This is because, (18) imposes
µjRji+ζj 6= 0. Hence, (µj = 0, ζj = 0) is not possible. Next,
we define

c∗j ,
|Aj |∑
i∈Aj

1
Rji

; C∗j ,
1

|Aj |
∑
i∈Aj

Rji (19)

We will make use of the following lemmas to establish our
main result.

Lemma 1: (a) If Cj ≥ C∗j , then (αji = 1
|Aj | ,∀i ∈ Aj) is

the unique optimal solution to [Pj
Local(Cj)].

(b) If Cj < C∗j , then (αji = 1
|Aj | ,∀i ∈ Aj) is not feasible.

Proof: It is easy to verify that αji = 1
|Aj | for all i ∈ Aj ,

µj = 0 and ζj = |Aj | satisfy all KKT conditions if Cj ≥ C∗j .
It is thus an optimal solution consistent with the backhaul
capacity value Cj ≥ C∗j . Proposition 2 implies that this is in
fact the only optimal solution.

If Cj < C∗j , then substituting αji = 1
|Aj | for all i ∈ Aj in∑

i∈Aj
αjiRji ≤ Cj results in a contradiction.

Lemma 2: (a) If Cj ≤ c∗j , then (αji =
Cj

|Aj |Rji
,∀i ∈ Aj) is

the unique optimal solution to [Pj
Local(Cj)].

(b) If Cj > c∗j , then (αji =
Cj

|Aj |Rji
,∀i ∈ Aj) is not feasible.

Proof: We can easily verify that αji =
Cj

|Aj |Rji
for all

i ∈ Aj , µj =
|Aj |
Cj

and ζj = 0 satisfy all KKT conditions
if Cj ≤ c∗j . It is thus an optimal solution consistent with the
backhaul capacity value Cj ≤ c∗j . Proposition 2 implies that
this is also the only optimal solution.

If Cj > c∗j , then substituting αji =
Cj

|Aj |Rji
for all i ∈ Aj

in
∑
i∈Aj

αji ≤ 1 results in a contradiction.
Lemma 3: If c∗j < Cj < C∗j , the optimal dual solution is

obtained by solving the following equations for µj > 0 and
ζj > 0. ∑

i∈Aj

Rji
µjRji + ζj

= Cj (20)

∑
i∈Aj

1

µjRji + ζj
= 1 (21)

The primal solution can then be obtained as αji = (µjRji +
ζj)
−1 for all i ∈ Aj .

Proof: We will first show that the optimal dual variables
have to satisfy µj > 0 and ζj > 0.

First, we assume that there exists a dual optimal solution
such that µj = 0. µj = 0 implies ζj > 0, and hence

αji =
1

ζj
and

∑
i∈Aj

αji = 1 =⇒ αji =
1

|Aj |
,∀i ∈ Aj (22)

We know from Lemma 1(b) that this is an infeasible solution
since Cj < C∗j . Thus, we require µj > 0.

Similarly, we assume that there exists a dual optimal solu-
tion such that ζj = 0. ζj = 0 implies µj > 0, and hence

αj =
1

µjRji
and

∑
i∈Aj

αjiRji = C =⇒ µj =
|Aj |
Cj

(23)

=⇒ αj =
C

|Aj |Rji
,∀i ∈ Aj (24)

We know from Lemma 2(b) that this is an infeasible solution
since Cj > c∗j . Thus, we require ζj > 0.

Thus, the optimal solution has to satisfy µj > 0 and ζj > 0.
In such case, (15) and (16) mandate that the primal constraints
(10) and (11) are satisfied with equality, i.e.,∑

i∈Aj

Rjiαji = Cj and
∑
i∈Aj

αji = 1 (25)

Subsituting the value of αji from (18), we get the required
equations (20) and (21). A strictly positive solution of (µj , ζj)
to (20) and (21) should exist as we know from Proposition 2
that the problem always has a unique solution with αji >
0, µj ≥ 0, ζj ≥ 0, given Cj > 0.

These results characterize the local scheduling solutions at
the small cells that yield the global optimal solution depending
on the values of the Cj’s.
D. Interpretation

In Fig. 2, the solid curve represents the typical shape of the
plot of the geometric mean throughput (

(
|Aj |
√∏

i∈Aj
λi

)
) as

a function of the backhaul capacity for one of the small cells
j ∈ P when the local PF scheduling (which yields the global
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Fig. 2. The three regions and the two critical values of backhaul capacity

PF) is performed. This figure shows the three regions as a
function of the two critical values of the backhaul capacity.

1) As we mentioned earlier, it is known that if Cj is
infinitely large, local PF is equivalent to equal-time scheduling
with αji = 1

|Aj | for all i ∈ Aj . Such an assumption of
infinite backhaul capacity is so ubiquitous in the literature of
cellular networks that equal-time scheduling has often been
seen as being synonymous to proportional fairness. Our result
(Lemma 1) shows that this equivalence is true only when
the backhaul capacity is greater than or equal to C∗j (Region
1 in Fig. 2). However if Cj < C∗j , equal-time scheduling
with αji = 1

|Aj | for all i ∈ Aj is not feasible. In this
case, if we still impose an equal-time scheduling among
users (i.e., αji = αji′ , ∀i, i′ ∈ Aj), we will in general
be under-utilizing the time resource (i.e.,

∑
i∈Aj

αji < 1)
and the performance will be sub-optimal. Let us define a
new scheduling scheme that adds the following equal-time
scheduling constraint on [Pj

Local(Cj)]:

αji = αji′ , ∀i, i′ ∈ Aj

We call it the local equal-time scheduling. We can show that
it imposes αji = min{ 1

|Aj | ,
Cj∑

i∈Aj
Rji
} for all i ∈ Aj , and

the corresponding GM throughput |Aj |
√∏

i∈Aj
λi is given by

Cj∑
i∈Aj

Rji
R̃j if Cj < C∗j and by 1

|Aj | R̃j otherwise, where

R̃j = |Aj |
√∏

i∈Aj
Rji. In Section IV, we will compare the

performance between the optimal local PF scheduling and the
local equal-time scheduling as a function of backhaul capacity.
Such a comparison between optimal scheduling and local
equal-time scheme is intended to show how much performance
degradation can be expected if equal-time scheme (which
would otherwise be optimal if the backhaul capacity was
infinite) is employed.

2) When Cj ≤ c∗j (Region 2 in Fig. 2), we have αjiRji =
Cj

|Aj | for all i ∈ Aj (from Lemma 2(a)). This is a region
where users in a given small cell are offered equal throughput.
Thus for Cj ≤ c∗j , a local equal-throughput scheduling is
equivalent to the local PF scheduling. Interestingly in the case
with infinite backhaul, max-min scheduling is equivalent to an
equal-throughput scheduling scheme.

3) For c∗j < Cj < C∗j (Region 3 in Fig. 2), neither local
equal-throughput nor local equal-time scheduling is optimal.
The optimal solution to local PF can however be simply

obtained by solving the set of two non-linear equations (20)
and (21) in two variables (µj , ζj).

In the next section, we present numerical results that quan-
tify the impact of the small cell backhaul capacity on the
system performance and the loss in GM throughput due to
performing local equal-time scheduling as oppose to the local
optimal scheduling as a function of the backhaul capacity, in
a realistic HetNet setting.

IV. NUMERICAL RESULTS

We consider a hexagonal HetNet deployment area with each
side equal to 500/

√
3 m. This corresponds to a macro cell for

a scenario with an inter-site distance of 500m. In addition
to a centrally placed MBS, we have X = 4 symmetrically
placed small cells (j = 1, 2, 3, 4) at a distance of 178m from
the MBS. We take PMBS = 46dBm and PPBS = 30dBm.
Outside interference is calculated by considering 18 identical
macro cells around the given macro cell and a reuse factor of 3.
We consider scenarios where the small cells are identical, i.e.
they all have the same Cj = C. Out of M = 100 subchannels,
K = 50 subchannels are used by each small cell and the
remaining M − K = 50 subchannels are allocated to the
MBS. We assume that there are N = 75 users uniformly
distributed in this area. We use a distance-based path-loss
model recommended by 3GPP [11], shown in Table II in
[7], in order to calculate the path-loss (in decibel) from j
to i. The channel-gains Gji are obtained by further applying
a log-normal shadowing of zero mean and 8dB standard
deviation. A random realization corresponds to a realization
of channel-gains for a random instance of uniformly deployed
user positions and randomly generated shadowing coefficients.
The rate function f(.) is taken as the 15-rate MCS available
in LTE, as shown in Table III of [7]. The table shows the
efficiency el in terms of bits per symbol for a given threshold
SNR. f(γ) can then be calculated as el

nscnsym

T if γ is between
lth and (l + 1)th SNR threshold. nsc = 12, nsym = 14 and
T = 1ms are respectively the number of subcarriers in one
subchannel, the number of OFDM symbols in one subframe
and the duration of a subframe. We take N0 = −112.45dBm
as the noise power per subchannel.

User association (UA) is known to play a crucial role in
the performance of HetNets. The conventional approach of
associating to the BS providing the highest SINR is known to
perform poorly as it tends to overload the MBS. We consider
two promising user association schemes introduced in the
literature.
1) Small cell First (SCF)(δ) [4]: This scheme has a tun-
able parameter δ. For each i, we set xj∗i = 1 for j∗ =
arg maxj∈P γji1{γji≥δ}. In other words, we associate to the
best small cell as long as the SINR from the small cell is
greater than or equal to δ. If γji < δ for all j ∈ P , UE
i associates to the MBS and thus we set x0i = 1. δ is a
parameter that can be chosen to reflect the relative SINR-bias
in favor of small cells over the MBS.
2) Range Extension (RE) [12]: This scheme associates a UE
to the BS with the highest channel-gain. For each i, we set



0 5 10 15 20 25 30 35 40 45
C (Mbps)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

GM
 T

hr
ou

gh
pu

t o
f t

he
 sy

ste
m

 (M
bp

s)

Optimal SCF(1.0dB)
Optimal SCF(6.6dB)
Optimal RE

Fig. 3. GM throughput of the system as a function of backhaul capacity.

xj∗i = 1 only for j∗ = arg maxj∈P∪{0}Gji.
For a given realization ω, we can compute the global PF

GM throughput for a given UA and a given K defined as
|N|
√∏

i∈N λi. Fig. 3 shows how the GM throughput averaged
over 100 realizations evolves as a a function of C (the common
small cell backhaul capacity) for K=50 and 3 UAs (RE, SCF
with δ = 1.0dB and SCF with δ = 6.6dB). Clearly the impact
of a limited backhaul capacity on the system performance
is significant. As expected, we see that the GM throughput
increases with C and reaches a plateau when C goes beyond
C∗. Fig. 3 also confirms that SCF can perform much better
than RE when C is not the bottleneck (this was shown in [4]).

We now compare the scenario in which the optimal local
scheduling schemes are performed in each small cell with the
scenario in which each small cell uses equal time scheduling.
For a given realization ω, we can obtain the geometric mean
throughput for small cell j, defined as |Aj |

√∏
i∈Aj

λi, for
the Global optimal (G) scheduling, and the case where local
equal-time (ET) scheduling is performed in each small cell
irrespective of the value of Cj . Let ΛGj (ω), and ΛETj (ω)
be these GM throughputs. The percentage-loss in geometric
mean throughput for the realization ω due to ET scheduling is
calculated as 100× ΛG

j (ω)−ΛET
j (ω)

ΛG
j (ω)

. Note that, the loss is zero
if C∗j ≤ Cj , where C∗j varies across different realizations. So,
for a given realization, C∗j characterizes the capacity above
which the small cell backhaul is not a bottleneck.

In Fig. 4, we plot the average percentage-loss in geometric
mean throughput at one of the small cells due to the equal-time
scheme over a set of 100 random realizations for the SCF user
association scheme with two choices of δ, and for the Range
Extension scheme. As evident from the plots for SCF(δ =
1.0dB), we could lose up to about 20% performance if equal-
time scheme is employed when the backhaul capacity is very
low. The results clearly show the importance of a backhaul-
aware scheduling. For SCF(δ = 6.6dB) and Range Extension,
we see a much smaller performance loss. This shows that the
impact of backhaul limitation varies for different UA schemes.

V. CONCLUSION

In this paper, we investigated the impact of limited backhaul
capacity on the way optimal scheduling should be performed
in a HetNet comprising of a macro base station with a number
of overlaid small cells. We showed that the problem can
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Fig. 4. The average loss in geometric mean throughput per small cell

be separated into per-BS independent local PF problems.
However, unlike the case with infinite backhaul, where the
local PF scheme is equivalent to an equal time scheduling,
a local PF scheme with finite backhaul can be of one of
three types: equal-throughput, equal-time, and neither of the
two. We derive closed-form expressions for the two critical
values of backhaul capacity that can be used to determine
the type of the best local scheduling. With numerical results,
we quantified the impact of limited backhaul capacity on the
system performance and the performance gap between the
optimal scheme and a scheme where each user is scheduled for
an equal amount of time. These results show that the loss in
performance with a sub-optimal scheme can be significant. In
conclusion, we have shown that a backhaul limitation-aware
optimal scheme can not only be necessary but also easy to
implement.
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