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Abstract

We consider a scenario in which an operator installs (small cell) base sta-

tions on top of city buses to offer better quality of experience (QoE) to their

passengers. In that case, providing a consistent backhaul rate (i.e., a con-

stant rate at all time) to these base stations could help mitigate the effects of

mobility on the QoE. Specifically, we perform the analysis to determine the

maximum consistent backhaul rate that can be offered to a bus on a given

route, given the resource allocated by the operator to backhauling, by taking

advantage of the fact that different buses on that route will see different con-

ditions at a given time. We also consider the case where we allow a small

outage probability, i.e., that the consistent rate is not provided for a small

proportion of time. We show that by allowing an outage probability of only

1% we can increase the achievable backhaul rate by 50%. We then show how

to compute the Pareto frontier (rate region) of the achievable consistent back-

haul rates when there are two bus routes. The analysis is performed under an

independence assumption and hence we validate our results by simulations.

Altogether, the cost of consistency is very high, but it can be partly mitigated

by allocating the unused backhaul capacity to best effort services in real time.
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1 Introduction

Nowadays, many public urban transportation systems provide or are considering

providing Internet access to their passengers. To accomplish that, they should be

furnished with small cell base stations (SCB) [1]. SCBs are connected to the Inter-

net via macro base stations (BTS). The radio link between an SCB and its current

BTS is called a backhaul link. The BTS has to allocate part of its resources (i.e.,

part of its subchannels) to these backhaul links and this affects the Quality of Ex-

perience (QoE) seen by the passengers.

We consider a scenario in which an operator installs (small cell) base stations

on top of city buses to offer better QoE to their passengers. In that case, providing

a consistent backhaul rate (i.e., a constant rate at all time) to these base stations

could help mitigate the effects of mobility on the QoE. Specifically, we explore the

challenges and solutions to provide a maximum consistent backhaul rate to buses

everywhere at any time in spite of their mobility, the possibly varying (but bounded)

number of buses in the cell, and their time-varying channels. We will provide the

analysis for the case of one bus route first followed by the case with two different

bus routes. In large cities, there are typically more than one bus per line1 present

in a cell coverage area at the same time. As the buses of one line follow the same

path, they have similar mobility patterns, and hence we expect them to have the

same channel characteristics in distribution.

The interesting research questions that arise related to the problem of offering

constant backhaul rates to lines of buses within a cell are:

• What is the maximum consistent rate that can be offered simultaneously to

buses of a single line given that the resources dedicated to this type of back-

hauling by the BTS are known?

• What are the maximum consistent rates that can be offered simultaneously

to buses of different lines given that the resources dedicated to this type of

backhauling by the BTS are known?

• If the operator is willing to accept a small outage probability (i.e., not comply

with the backhaul consistent rate guarantee for a small percentage of the

time), what is the gain in the backhaul rates that can be offered?

We answer all these questions and in particular, we provide the Pareto frontier

of the backhaul rates that can be offered to two lines of buses in the general case.

We propose models that can capture both a deterministic or a random number of

buses present in the cell. These models are used to determine the possibly different

consistent backhaul rates that can be offered to the buses in the two lines, given the

resources dedicated to this type of backhauling by the BTS. Our contributions are

summarized below:

1We will use the term line and route interchangeably.
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• We derive the maximum consistent backhaul rate that can be provided in a

cell, to each bus of one route, both for deterministic and random number of

buses, for a given amount of resources dedicated by the BTS to bus backhaul-

ing, for a given outage probability under the “independence” assumption that

the rate distributions seen by each bus in the route are i.i.d. and memoryless.

• We determine the Pareto frontier of the consistent backhaul rates (consistent

within a bus route) that can be offered to buses on 2 bus routes under the

same assumption for a given amount of resources dedicated by the BTS to

bus backhauling and for a given outage probability.

• We validate our approach by simulations and obtain several engineering in-

sights:

– Our independence assumption yields results that are very close to those

obtained by simulation where this assumption does not hold.

– We show that by allowing a very small outage probability, the backhaul

consistent rate for each bus can be increased significantly for the same

amount of available resources.

– We show that the cost of consistency is very high and this can be partly

mitigated by allowing the resources dedicated to backhauling to be

used on a best effort basis by other users of the BTS.

This report is organized as follows. In Section 2 we discuss some related work.

The model and analysis are presented in Section 3. In Section 4, we use our ana-

lytical results to provide numerical results and some engineering insights. Finally,

we conclude our work in Section 5.

2 Related Work

There has been a significant amount of research in the area of vehicular network-

ing [2, 3, 4]. In [5], the authors investigate how rate predictions of mobile users can

be utilized to improve long-term fairness. They use the α-fair criteria to formulate

a predictive long-term resource allocator that improves fair user service over mul-

tiple cells. Throughput optimization and achieving fairness are the goals of [6]. It

considers the association problem, but for WiFi APs.

Wireless backhauling for 4G was the focus of [7]. In order to improve the

performance, the authors propose a mesh backhaul network. A vehicular back-

haul is presented in [8], where a centralized software defined based architecture is

proposed. This architecture consists of a central controller that acts as a service

broker.

In most of the works related to backhauling for either vehicular networks or

any other wireless network, the authors propose architectures that offer some im-

provements in terms of one of the metrics of interest, together with procedures for
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device association, connectivity and mobility management. Nevertheless, in most

of them there is no analysis, and all the outcomes are based on experimental or

simulation results.

The works somehow related to ours that provide some analysis on networks

created from vehicular users are [9] and [10]. In [9], an interference-based analy-

sis is performed in order to obtain the worst-case capacity in a Vehicular Ad-hoc

Network (VANET). A very detailed analysis based on a very realistic 802.11 com-

munications model is performed in [10]. That model evaluates the throughput

performance of multiple vehicles that share the available wireless resources (from

the AP). It captures the effect of road capacity, vehicle density, and different ve-

locities of the users. Nevertheless, the proposed approach does not guarantee any

consistent data rate at any time, as opposed to the approach we follow here where

we are able to guarantee a constant rate to small cells.

Other works related to ours in some ways are [11] and [12]. These focus on

cellular-based vehicular networks but address different research questions. In [11],

the authors focus on frequency allocation and power control. They propose a reg-

ular frequency reuse pattern and calculate users’ achievable capacity. They also

propose an adaptive power control algorithm to reduce co-channel interference.

However, there is no performance guarantee for the users. In [12], the vehicular

mobility performance for a 5G cooperative MIMO small cell network is analyzed.

The authors also consider the co-channel interference. The analysis is based on

stochastic geometry. While the analysis is quite involved and in depth, it does not

capture the case when we want to offer a given QoS per user, and they do not

consider backhauling neither.

Summarizing, we found no work that addresses analytically the backhauling of

small cells furnishing city buses, and especially not in the context of offering them

consistent rates.

3 Performance modeling and analysis

3.1 The system

We consider buses furnished with their own small cell base stations (SCBs) within

the coverage region of a macro BTS. The link between the bus SCB and the BTS

is the backhaul link. We focus on the downlink in this paper, i.e., from the BTS to

the SCBs.

Due to their mobility and time varying channels, the buses will see a time

varying per-channel data rate (a function of the modulation and coding (MCS)

scheme and the per-channel Signal to Interference and Noise Ratio (SINR)). To

capture these effects, we model the per-channel data rate of a bus in route i as

a random variable, Ri. It is clearly a function of time, but we omit this in our

notations for simplicity. We assume that all buses in a given route see the same rate

distribution. Specifically, we assume flat channels at a given time. We also assume

that the adaptive modulation and coding scheme (MCS) that is used to translate
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the SINR into a per-channel rate is discrete with m possible values (typically m =

15) [13, 14]. More details on this are given in Section 4. Hence, Ri is a discrete

random variable with values {r1, r2, . . . , rm}, such that r1 < r2 < . . . < rm, and with

a cumulative distribution function FRi
(x). The probability pi,k that a bus in route i

will have a given per-channel rate rk depends on the SINR it sees and hence on the

bus mobility pattern and the route environment. This means that the probabilities

pi,k are different for different routes.

In this paper, we assume that the set of probabilities,
{
p1,k, p2,k, . . . , pm,k

}
is

given (it can easily be obtained from measurements). This is what we call the

rate distribution in the following. We also assume that the time is slotted and

the rates seen by a bus in consecutive time slots are independent (i.e., they are

memoryless), and the per-channel rates of different buses in the same route are i.i.d.

These are strong assumptions. However, in Section 4, we relax these assumptions

and validate the theoretical results with realistic simulations based on assumptions

that depart from the theoretical ones.

We consider a case with one line of buses and a case with two lines of buses.

The number of lines can be generalized to more than two, but visually it is more

difficult to illustrate the performance. We provide a discussion on a higher number

of routes at the end of this section.

System model: We consider the downlink of a single macrocell and assume full

coverage all the time. The BTS allocates a set of K channels to bus-backhauling.

Its transmission power budget on these K channels is PT .
2 We assume that the BTS

power is allocated equally among all the channels, i.e., the transmission power per

channel is PT

K
. We consider a time-slotted system where a time slot corresponds to

a frame duration (e.g., 10 ms), and we assume that during a time slot the channel

characteristics do not change, but channel gains can vary from one time slot to

another.

Number of buses: We perform our analysis for two scenarios. In the first sce-

nario, we assume that the number of buses on line i in the cell is constant and

equal to ni. In the second one, we perform the analysis for a more realistic case

where buses come into and go out of the covered region. We model the number

of buses on line i in the cell (in a given time slot)3 with the random variable Ni

that takes its values in
{
0, 1, . . . ,Ni,max

}
with the probability mass functions (PMF)

αi, j, j = 0, 1, . . . ,Ni,max. We assume that the per-line PMF is given (it can easily be

obtained from measurements).

In the following, we first consider the case with one bus line and a constant

number of buses in the cell, then the case with one bus line and a varying number

of buses in the cell before considering the case of 2 bus lines.

2Note that the BTS is in fact dedicating two types of resources to bus-backhauling, namely chan-

nels and power budget.
3We assume that the number of buses in the next time slot will change randomly according to the

corresponding PMF.
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3.2 The case of one bus line and a constant number of buses in the cell

We consider the case where there is one bus line and there are n buses at all time in

the cell. As already mentioned in Section 1, we are interested to provide each bus

in a given route the same consistent backhaul rate, U (consistent meaning that the

rate remains constant and is delivered at all time). We strive to assign the buses a

rate as high as possible given the constrained resources (finite number of channels

and limited power). We might be interested in providing a larger rate to these buses

by trading off the “at all time” requirement. Hence, we consider the case where we

have to deliver the constant rate U to a bus at least 1 − ε of the time with ε being

less than a few percents. We call ε the outage probability.

We assume that the BTS allocates its resources on the downlink using a sched-

uler as in [15]. Specifically, a bus j receives all the K channels for a time duration

of t j
4. As buses see variable per-channel rates, in order to provide a given backhaul

rate U, a different portion of time needs to be allocated to each bus in every time

slot. Specifically, a bus might have a very bad channel at a given time (leading to

poor per-channel rate) and in that case, more time needs to be allocated to that bus

in order to maintain the desired data rate. On the other hand, when the bus has a

good channel, less time needs to be assigned to achieve the consistent rate.

In order to offer the data rate U to bus j that sees a per-channel rate r in a given

time slot t, x j(t) (the ratio of time to get all the resources in that time slot) should

be equal to x j(t) =
U

K·r
.

If we want to provide a given U to all n buses with no outage, we should have

Xn(t) =

n∑

j=1

x j(t) ≤ 1. (1)

For ease of notations, we discard the time parameter t. We call the random variable

Xn the resource utilization ratio. Since all the buses belong to the same route, they

see the same distribution for their per-channel data rate, R. The resource utilization

ratio is then, under our assumptions, the sum of n i.i.d. random variables U
KR

.

If we want to offer U to all buses all the time, then P(Xn > 1) should be equal

to zero. If we accept an outage probability ε > 0, then

P(Xn > 1) ≤ ε, (2)

which can be loosely written as

P

(

1

R
+ . . . +

1

R
≤

K

U

)

≥ 1 − ε, (3)

where the sum has n terms. The left-hand side of Eq.(3) is the Cumulative Distri-

bution Function (CDF) of the random variable that is the sum of the inverses of the

random variable R at point K
U

. As we know from basic probability theory [16], the

4This value is a portion of the total duration of the time slot.
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CDF of the sum of two random variables, W = Y + Z, is equal to the convolution

of the CDF of the first variable with the Probability Mass (Density) Function (de-

pending if the random variable Z is discrete or continuous) of the second random

variable, i.e.,

FW(w) = FY(w) ∗ P[Z = w]. (4)

As we assume here that the per-channel data rate can take values from a finite set

of m values, we have used PMF in Eq.(4). We will do that in the following as well.

Further, we can write the CDF of the sum Y = 1
R
+ . . . + 1

R
as

FY(x) = P

[

1

R
≤ x

]

∗ P

[

1

R
= x

]

∗ . . . ∗ P

[

1

R
= x

]

, (5)

where ∗ denotes the convolution operation.

Our objective is to find the maximum value of Umax that does not violate Eq.(2),

given K, n, ε, the distribution of R, and PT . Next, we will consider closely the

characteristics of the CDF and PMF of the random variable 1
R

. For the CDF of 1
R

we can write

P

[

1

R
≤ x

]

= P

[

R ≥
1

x

]

= f (x) (6)

As it can be seen from Eq.(6), the CDF of 1
R

is, in fact, the Complementary CDF

(CCDF) of R, but at point 1
x
. This function is shown in Fig. 1. The other terms of

Eq.(5) are the PMF of 1/R and can be written as

P

[

1

R
= x

]

= P

[

R =
1

x

]

=

m∑

k=1

pk · δ

(

x −
1

rk

)

= g(x), (7)

where δ is the Dirac delta function. See Fig. 2 for a representation of g(x) that is a

sum of Dirac delta functions.

Basically, after performing the convolution of the stair-case function f (x) with

g(x) once, the new function will again be a stair-case function, although with a

higher number of “jumps”. As we perform the convolution operation again (up to

n − 1 times) the resultant function will be smoother, and finally the shape of FY(x)

will be as in Fig. 3.

The following theorem gives the maximum achievable consistent data rate

when there is only one bus route.

Theorem 1. The maximum consistent data rate that can be guaranteed in a cell to

every bus (following the same single route) with a probability 1− ε, when there are

K channels for bus-backhauling and n buses in the cell at all time, is

Umax =
K

F−1
Y

(1 − ε)
. (8)
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Figure 1: The function f (x).

Proof. We can rewrite the condition given in Eq.(3) as

FY

(
K

U

)

≥ 1 − ε. (9)

Let θ0 be such that FY (θ0) = 1 − ε, i.e., θ0 = F−1
Y

(1 − ε) (see Fig. 3). The function

FY is an increasing function, and the condition in Eq.(9) is fulfilled for x = K
U
≥

θ0. Since K
U

decreases as U increases, the maximum value of the consistent rate

guaranteed to every bus, for which Eq.(9) still holds, is achieved at the point θ0.

So, the maximum consistent data rate that can be guaranteed 1 − ε of the time to

every bus is

Umax =
K

θ0
. (10)

�

Note that θ0 is a function of ε, n, the distribution of R, and that Umax is a

function of K, the distribution of R, ε, n, and PT (the transmission budget allocated

to the K channels). If PT is decreased (resp. increased), the per-channel SINR

would decrease (resp. increase), and so would the per-channel rate.

3.3 The case of one bus line and a random number of buses in the cell

While the assumption of constant number of buses in the cell was made as a first

step in the analysis, it is not realistic. Namely, different buses will enter and leave

the cell coverage at different times. Usually, a single base station will not cover

the complete bus route. We consider the case of a single bus route where Nmax is

the maximum number of buses that can be present simultaneously in the cell. The
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Figure 2: The function g(x).

probability of having j buses in the cell is α j. The analysis is different from the

previous case.

Theorem 2. The maximum consistent data rate that can be guaranteed in a cell

to every bus (following the same single line) with a probability 1 − ε, when the

number of buses N is random, is the solution of the equation

Nmax∑

j=0

FY, j

(

K

Umax

)

α j = 1 − ε, (11)

where FY, j(x) is a generalization of FY(x) from Eq.(5) to the case where the number

of terms is j.

Proof. For the case of random number of buses simultaneously being present in

the cell, Eq.(3) will lead to

Nmax∑

j=0

P





1

R
+ . . . +

1

R
︸         ︷︷         ︸

j

≤
K

U





P(N = j) ≥ 1 − ε, (12)

where P(N = j) = α j. Let FY, j

(
K
U

)

= P





1

R
+ . . . +

1

R
︸         ︷︷         ︸

j

≤ K
U





. Then, the left-hand

side of Eq.(12) can be written as

Nmax∑

j=0

FY, j

(
K

U

)

α j ≥ 1 − ε (13)

It follows that FY,0

(
K
U

)

= 1, FY,1

(
K
U

)

= P
(

1
R
≤ K

U

)

= f
(

K
U

)

, and FY, j

(
K
U

)

, for j ≥ 2

is FY

(
K
U

)

with n = j ≥ 2 terms. The functions FY, j (except for j = 0 when it is
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a constant) are increasing functions in K
U

, i.e., they decrease as U increases. The

same happens with the sum in Eq.(13). As increasing the value of the left-hand

side of Eq.(13) means decreasing of the value of U, the maximum consistent rate

is achieved for the smallest possible allowed value of
∑Nmax

j=0
FY, j

(
K
U

)

α j, which is

1 − ε, i.e.,
Nmax∑

j=0

FY, j

(

K

Umax

)

α j = 1 − ε.

�

Note that Umax is a function of ε, K, PT , the distribution of R, and the α j’s.

The solution of Eq.(13) can be obtained numerically.

3.4 The case with 2 bus lines and a constant number of buses per line

We now consider two lines of buses, each with a different per-channel data rate

distribution. We denote the corresponding random variables by R1 and R2, and the

number of buses by n1 and n2, respectively. Again, we want to assign the same

consistent rate to each bus of a given line, say U1 and U2. We get the following

constraint

P





U1

KR1

+ . . . +
U1

KR1
︸                 ︷︷                 ︸

n1

+
U2

KR2

+ . . . +
U2

KR2
︸                 ︷︷                 ︸

n2

≤ 1





≥ 1 − ε, (14)

and obtain the following result:

Result 3. The rate region for the consistent data rates for n1 buses of line 1 and n2

buses of line 2 is given by

P

[

R1 ≥
U1

Kx

]

∗P

[

R1 =
U1

Kx

]

∗. . .∗P

[

R1 =
U1

Kx

]

∗P

[

R2 =
U2

Kx

]

∗. . .∗P

[

R2 =
U2

Kx

]

≥ 1−ε.

(15)

There are clearly many possible pairs (U1,U2) that are feasible. We will com-

pute the Pareto frontier that can be obtained as follows. First, we determine the

values of U1,max when the data rate assigned to buses of line 2 is 0 (from Eq.(10)).

Then, we determine U2,max from Eq.(10), when the data rate assigned to buses of

line 1 is 0. This way we have the two end points of the rate region (Pareto frontier).

In order to obtain the complete Pareto frontier, for each value of U1 in the interval

(0,U1,max), we determine the maximum possible value of U2,max such that the in-

equality Eq.(15) is not violated. This way we obtain the complete Pareto frontier,

as in Fig. 4.

The special case of ε = 0. If we want to guarantee a constant backhaul rate U1

(resp. U2) to all the buses of line 1 (resp. line 2) in the cell, then since there is a

non-zero probability that all the buses see the lowest per channel rate r1 we get the

following result:
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Figure 3: The function FY (x).

Result 4. The rate region for ε = 0 is the line

n1U1

Kr1

+
n2U2

Kr1

= 1. (16)

This result is obtained from

P

(

U1

KR1

+ . . . +
U1

KR1

+
U2

KR2

+ . . . +
U2

KR2

> 1

)

= 0,

where there are n1
U1

KR1
and n2

U2

KR2
terms in the previous equation, respectively.

This is equivalent to

P

(

U1

KR1

+ . . . +
U1

KR1

+
U2

KR2

+ . . . +
U2

KR2

<= 1

)

= 1,

or equivalently

U1

KR1

+ . . . +
U1

KR1

+
U2

KR2

+ . . . +
U2

KR2

<= 1.

In the scenario of ε = 0, we must assume that at some time slot all the users will

see the lowest per-channel rate, r1. Since ε = 0, even in that case (when everyone

sees r1) the resources shouldn’t be exceeded. Hence, R1 = r1 and R2 = r2, after

replacing them in Eq.(3.4) and assuming that all the resources are fully utilized

(left-hand side of Eq.(3.4) equal to 1), we obtain Eq.(16).

10



Figure 4: The Pareto frontier.

3.5 The case with 2 bus lines and a varying number of buses per line

Recall that in that case, the maximum number of buses in the system is N1,max for

bus line 1 and N2,max for bus line 2. Recall that the probability of having j1 buses of

line 1 present in the system is P[N1 = j1] = α1, j1 (for j1 ∈ {0, 1, . . . ,N1,max}). The

corresponding probability for line 2 is P[N2 = j2] = α2, j2 , for j2 ∈ {0, 1, . . . ,N2,max}.

We assume that these PMFs are given. Recall the constraint

P





U1

KR1

+ . . . +
U1

KR1
︸                 ︷︷                 ︸

N1

+
U2

KR2

+ . . . +
U2

KR2
︸                 ︷︷                 ︸

N2

≤ 1





≥ 1 − ε, (17)

which gives

∑

j1

∑

j2

P





U1

KR1

+ · · +
U1

KR1
︸               ︷︷               ︸

N1

+
U2

KR2

+ · · +
U2

KR2
︸               ︷︷               ︸

N2

≤ 1|N1 = j1,N2 = j2





·P[N1 = j1,N2 = j2] ≥ 1 − ε. (18)

The number of line 1 buses present in the system is independent of the number of

line 2 buses. So,

P[N1 = j1,N2 = j2] = P[N1 = j1]P[N2 = j2] = α1, j1α2, j2 ,

and the left-hand side of the above inequality yields

N1,max∑

j1=0

N2,max∑

j2=0

P





U1

KR1

+ . . . +
U1

KR1
︸                 ︷︷                 ︸

j1

+
U2

KR2

+ . . . +
U2

KR2
︸                 ︷︷                 ︸

j2

≤ 1





α1, j1α2, j2 .

11



In the previous equation, for the trivial terms of the probability we have j1 =

0, j2 = 0, P = 1, j1 = 1, j2 = 0 ⇒ P
[

U1

KR1
≤ 1

]

= P
[

R1 ≥
U1

K

]

, j1 = 0, j2 = 1 ⇒

P
[

U2

KR2
≤ 1

]

= P
[

R2 ≥
U2

K

]

, j1 = 1, j2 = 1, P
[

U1

KR1
+

U2

KR2
≤ 1

]

= P
[

R1 ≥
U1

Kx

]

∗

P
[

R2 ≥
U2

Kx

]

|x = 1.

The procedure of computing the Pareto frontier is similar to the case of constant

number of buses, except that now we get the end points (U1,max and U2,max) from

Eq.(11), and the points on the Pareto frontier must fulfill the inequality Eq.(18).

As a final note, in case there are three lines of buses, then the Pareto frontier

would have the shape of a sphere sector, except for the case of ε = 0, in which

case it would be a plane. For a higher number of bus lines, visualizing the Pareto

frontier would be impossible. In that case, the optimal values of the data rates can

be determined numerically (using brute force search), except for ε = 0 when doing

so is trivial.

3.6 Static frequency sharing

Another option of resource sharing is to share statically the channels for line 1

and line 2 buses optimally, and then within the same group of users to share the

available channels as before. Let’s denote with K1 the number of channels assigned

to line 1 buses, and with K2 the number of channels assigned to line 2 buses. It

holds K = K1 + K2. The optimum values of K1 and K2 can be determined by

maximizing the objective function,

F = log
(

U
n1

1
U

n2

2

)

= n1 log U1 + n2 log U2.

The values of U1 and U2, from the above equation, according to Eq.(10) can be

written as U1 =
K1

θ1
, and U2 =

K2

θ2
, where θ1 and θ2 are calculated in a similar way

as θ0 in Eq.(10). The optimal values of K1 and K2 = K − K1 can be found by

solving the equation
∂F

∂K1

= 0,

whose solution leads to n1

K1
=

n2

K2
. So, for K1 and K2 we have K1 =

n1

n1+n2
K,

K2 =
n2

n1+n2
K, which after replacing in U1 and U2, we get the optimal values of the

backhaul rates as

Result 5. The maximum data rates when splitting statically the channels between

line 1 and line 2 buses are given by

U1, f =
n1

n1 + n2

·
K

θ1
,

and

U2, f =
n2

n1 + n2

·
K

θ2
.

12
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4 Simulation results

4.1 Simulation setup

We consider a system with 19 hexagonal cells (each with a BTS in the center)

(Fig.5), with a reuse factor of “3”. Cells shown in yellow share the same set of

channels. The number of channels the BS can transmit on is K = 100. Our focus is

cell 0 but we consider the 6 other cells to compute the inter-cell interference. The

hexagon radius is 1 km. The BTS transmission power is PT = 40W.

We consider an OFDM system. The physical layer parameters are based on

3GPP, and are shown in Table 1. The per-channel SINR user i receives on a given

channel in during a time slot is

γi =

PT

K
Gi,0

N0 +
∑6

l=1
PT

K
Gi,l

,

where Gi,0 is the channel gain from the transmitter and cell 0. Gi,l, l = 1, . . . , 6 are

the channel gains from the BTSs of cells 1 to 6 (the interference). The channel

model (gain) takes into account the path loss and shadowing (that is drawn from a

lognormal distribution with parameters given in Table 1). N0 is the additive white

Gaussian noise power on the (sub)channel. More details on this model can be

found in [17].

Table 1: Physical layer parameters

Noise power -174dBm
Hz

Shadowing average 0 dB

Shadowing s.d. 8 dB (Sub)channel bandwidth 180 KHz

Path loss 128 + 37.6 log 10
(

d
1000

)

, d > 35m

The system uses an adaptive modulation and coding scheme with 15 discrete

13



Table 2: Modulation and Coding schemes

SINR thresholds (dB) -6.5 -4 -2.6 -1 1 3 6.6 10 11.4 11.8 13 13.8 15.6 16.8 17.6

Efficiency (bits/symbol) 0.15 0.23 0.38 0.6 0.88 1.18 1.48 1.91 2.41 2.73 3.32 3.9 4.52 5.12 5.55

Table 3: Data rate levels per channel

R (kbps) 24 36.8 60.9 96.1 141 189 237.1 306 386.1 437.4 531.9 624.8 724.2 820.3 889.2

p1,k 0.09 0.04 0.02 0.03 0.04 0.05 0.09 0.09 0.04 0.01 0.03 0.02 0.04 0.03 0.38

p2,k 0.06 0.23 0.11 0.1 0.1 0.08 0.11 0.07 0.02 0.005 0.015 0.01 0.02 0.01 0.06

rates [13], [14].The duration of a time slot is t = 10 ms. We consider static channel

characteristics during a time slot.

Table 2 proposed in [13] and [14] gives the mapping between the SINR the

mobile user receives and the corresponding efficiency (in bits per symbol) she can

transmit with for the modulation and coding schemes for LTE. As we assume that

the transmission scheme is OFDM, the data rate (in bps) per channel a user will

experience given her SINR lies between the levels i and i+1 is r =
S COFDMS YOFDM

Ts f
ei,

where ei is the efficiency of level i, S COFDM is the number of data subcarriers per

channel bandwidth, and Ts f is the subframe duration. We use the following values

for these parameters [17]: S COFDM = 12, S YOFDM = 14, Ts f = 1 ms.

Given the values in Table 2, the per-channel data rate of any bus rate can take

one of the 15 values, as shown in the first row of Table 3.

4.2 Validation

In our model and the derivations therein (Eq.(8)) we have made some strong as-

sumptions for tractability purposes. Namely, we have assumed that the per-channel

rates for a given bus in different time slots are independent. We have also assumed

that the rates seen by different rates on the same line are i.i.d. However, since

the path loss is the major component of signal degradation, the bus rates in two

neighboring time slots are correlated (the received signal powers will probably be

relatively close). To validate our results we simulate a scenario that clearly departs

from the assumptions made in the theory. We conduct simulations in MATLAB

and we take the average of the metrics of interest over 1000 runs.

We perform the validation on a single line, i.e., line 1 in Fig. 6 with n buses.

We assume that all the buses have a velocity of 10 m/s. We consider the case where

the buses are present all the time in the cell. Basically, each bus after arriving at

the end of the cell returns back and moves towards the other end of the hexagon.

This would be equivalent to having the buses circulate between the two end points.

Here is a short description of our simulator. Given n, buses are initially put

in arbitrary positions within the route. For every bus, at the beginning of every

time slot, we calculate the per channel SINR, and based on that we determine the

per-channel rate. We should remind the reader that we assume that the per-channel

14
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Figure 7: One bus line: Consistent rates for different constant numbers of buses vs.

ε.

rate does not change within the time slot and that channels are flat. We run the

simulation for L = 100, 000 slots. After we determine the per-channel rate for all

buses in all slots, we determine the probabilities of having the per-channel rate rk,

i.e., p1,k. These values are given in the second row of Table 3 and are used for the

theoretical computations.

Having run a simulation, we can easily calculate the maximum consistent rate

Umax, for a given outage probability ε. Indeed, we know that the number of time

slots in which the constraint on consistency can be violated is ε ∗ L. If we order the

time slots in descending order of the values of the sum over all buses of the inverses

of the rate they each see, then Umax is determined by the time slot ε∗L+1, in which

the corresponding realization of Umax

(
1
R
+ . . . + 1

R

)

should not exceed 1.

Fig. 7 presents the theoretical and simulated maximum consistent rates vs. the

outage probability for different number of buses (n = 5, 7, 9). As can be seen, the

results are very close (the mismatch does not exceed 3-4%) despite the fact that the

assumptions are not identical. This shows the usefulness of our model in predicting

the performance. Furthermore, as the outage probability increases, the consistent

rate increases significantly. By allowing an outage probability of only 1% we can

increase the achievable backhaul rate by 50% compared to the case with ε = 0.

4.3 Pareto frontiers

We are now interested in determining the rate region (Pareto frontier) for the case

with 2 bus lines. The routes for these buses are shown in Fig. 6. We consider

scenarios with both deterministic and random number of buses. We obtain the
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Figure 8: Pareto frontier for constant numbers of buses.

probabilities for line 2 per-channel rates the same way as we did for line 1. They

are also shown in Table 3 (the third row).

We first consider n = 10 permanently present buses in the system, n1 = 5 for

line 1 and n2 = 5 for line 2. We consider 4 different values of the outage probability,

ε = {0, 0.01, 0.05, 0.1}. Fig. 8 illustrates the Pareto frontiers for these values of ε.

We see that by increasing ε a little bit, the Pareto frontier does expand significantly.

If we compare the data rates for ε = 0 (we must guarantee 100% of the time that

rate) and ε = 0.01 (99% of the time the promised data rate), we can see that the

rate for the later one is 50% higher. There is a diminishing return when increasing

ε further.

Another interesting observation is that by splitting beforehand the channels

among the two lines of buses (the corresponding results are denoted by triangles in

Fig. 8), i.e., line 1 receives K1 =
n1K

n1+n2
channels at all time out of the K channels

the results are worse than when we perform time sharing of resources.

We now consider the Pareto frontier for the case when both the numbers of line

1 and line 2 buses being simultaneously present in the cell are random variables.

The number of line 1 buses in the system is distributed according to the following

PMF: α1,0 = 0.2, α1,1 = 0.3, α1,2 = 0.1, α1,3 = 0.1, α1,4 = 0.15, and α1,5 = 0.15.

For line 2 buses, the corresponding PMF is: α2,0 = 0.15, α2,1 = 0.15, α2,2 = 0.15,

α2,3 = 0.15, α2,4 = 0.15, and α2,5 = 0.25. So, the maximum number of buses

for each line is 5. Fig. 9 illustrates the Pareto frontiers for the same values of ε.

Similar conclusions can be drawn out. The only difference is in the values of the

bus backhaul rates, which are now higher than before. The reason is that more

resources can be assigned to buses present at a given time instant in the cell, since
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Figure 9: Pareto frontier for random numbers of buses.

some of them will not be there always.

4.4 Unused resources

Having determined the consistent backhaul rate that can be provided to buses, we

proceed with characterizing the non-utilized resources. To this end, we consider

the single line case where buses are moving across line 2 and consider 3 different

values for ε. Fig. 10 depicts the average percentage of time a slot is not being

utilized as a function of the (fixed) number of buses. Recall that the BTS strictly

gives the committed backhaul rate to each bus and hence if all the buses see good

channels, the proportion of time to provide them with this rate might be much lower

than 1. The curves in Fig. 10 have been obtained by simulations.

Clearly, on average, the buses on the line use the resources only for a rather

small portion of time (and not the whole time), and hence the cost of consistency

is very high (almost 70% of the time in each time slot, channels are not being used

for ε = 0, and up to 50% of the time for the other values of ε). These unused

resources (time-wise) should be made available to other users of the BTS in a best

effort manner. Interestingly, for ε = 0, the percentage of non-utilized channels is

constant for any number of buses.

5 Conclusion

Rate consistency for bus backhauling was considered in this paper and analyzed

for different scenarios using an “independence” assumption that was validated via
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Figure 10: Non-utilized resources.

realistic scenarios. The insights are that the high price of consistency can be mit-

igated by allowing a small outage probability and putting a mechanism in place

to offer the unused channels in a best effort manner either to the buses or to other

users. As part of the future work, we plan to extend the analysis to capture any

number of routes.
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