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Abstract—We analyze two contractual frameworks for reg-
ulation services with battery-based energy storage: the SoC-
and energy-neutral contracts. Vis-a-vis the existing contractual
framework, the new contracts constrain the operator to generate
only SoC- and energy-neutral regulation signals within a contract
duration. For both contracts, we propose algorithms to maximize
the battery operator’s reward during a single contract, and
derive analytical expressions to quantify the reward over multiple
contracts. Numerical results using Lead-Acid and Lithium-ion
batteries provide several engineering insights.

I. INTRODUCTION

Electrical grid operators have the responsibility to maintain
the balance between demand and supply at all times using
services that operate at different time scales [1]. They typ-
ically predict the demand a day ahead, and schedule some
slow-ramping generators for supplying electricity. Then, the
target grid frequency is maintained by performing real-time
adjustments using fast-ramping generators or flexible loads
[1]. Another approach to provide regulation is to use energy
storage technologies (EST) that are able to recycle energy
and provide fast and accurate responses. This approach has
been adopted by several operators including the California
Independent System Operator (CAISO) [2]. However, despite
their speed and accuracy, there are some challenges linked
to the EST limited capacity, charging and discharging power
limits, and self-discharge. We will refer to a regulation unit
(RU) that uses an EST as a storage regulation unit (SRU).

The context of this study is the design and analysis of

contractual frameworks for regulation services better suited
for SRUs. In a contractual framework, an SRU and an operator
agree on a set of parameters and constraints on the regulations
signals that the operator can send to the SRU. To illustrate
this, let us focus on the existing framework [9]. A contract
lasts over D units of time, consisting of K time-slots of
length δ, i.e., D = Kδ. This contract has been negotiated
a few units of time ahead of time. During the negotiation
phase, the operator and the SRU agree on the downward and
upward regulation parameters r and R (r ≤ 0 ≤ R, in Watts).
The SRU commits to provide any power in the range [r, R]
in response to regulation signals sent by the operator. The
operator commits to generate a sequence of regulation signals
sk so that sk ∈ [r, R] in each time-slot k ∈ {1, . . . ,K}. The
SRU has to supply constant power sk during time-slot k if sk
is positive, and draw constant power (−sk) from the grid if it
is negative. Therefore, the only constraint on regulation signals
in the existing framework is to make sure that the signals will
be in the range [r, R] declared by the SRU.

The SRU is rewarded for its flexibility in terms of the
upward and downward regulation parameters R and r, re-
spectively, and for the actual amount of energy that it sup-
plies/draws during the contract. The amount of energy that
the SRU supplies/draws is not known at the beginning of a
contract. Therefore, the SRU will select its parameters r and R
so as to maximize the fixed part of the reward (call it f(R, |r|))
while keeping the risk of a regulation failure close to zero1.

Under the existing framework, the SRU would declare its
regulation parameters as a function of its state of charge (SoC)
at the beginning of the contract. In the following, when we
refer to the SoC of a battery, we refer to the energy stored in
the battery. The SoC at the end of the contract will be highly
dependent on the regulation signals sent during the contract
duration, making it challenging for the SRU to estimate its
reward over several succeeding contracts [9]. This uncertainty
in determining the reward2 over multiple contracts makes the
task of planning and operation difficult for an SRU [9].

The primary goal of this paper is to propose and analyze
alternative contractual frameworks that reduce this uncer-
tainty from the perspective of the SRU. Different contractual
frameworks can potentially create different burdens on the
operator side, but we focus on the SRU standpoint. In the first
framework, the operator commits to generating a sequence of
regulation signals so that the SoC at the end of a contract is the
same as the SoC at the beginning, i.e., there is no uncertainty

on the SoC at the end of a contract. We call it the SoC-

neutral contractual framework. In this contractual framework,
the SRU operation will be greatly simplified, and computing
the reward over several successive contracts will be as easy as
computing the reward over one single contract. While there are
many benefits with receiving SoC-neutral regulation signals
for SRUs, sending SoC-neutral regulation signals limits the
operator’s flexibility by adding more constraints on the kind
of regulation signals that the operator can send to an SRU and
requires a very accurate model of the EST operations.

To reduce the burden on operators while hopefully offer-
ing high rewards, we consider another framework which is
inspired in the framework deployed by CAISO [8]. In this
framework, called the energy-neutral contractual framework,
the operator commits to generate a sequence of regulation
signals that are energy-neutral, i.e., the energy supplied by
the SRU during the contract is equal to the energy absorbed
by the SRU. It is obvious that if the energy storage was

1There is a penalty to pay if the RU cannot honor its commitments in terms
of the regulation parameters R and r.

2We only refer to the fixed part of the reward when we refer to reward.



perfect (i.e., 100% efficiency and no leakage), a sequence of
regulation signals that is of zero mean would be SoC-neutral.
However, in the presence of losses, the SoC at the end of
multiple successive contracts would differ from the initial SoC.
Therefore, after a limited number of contracts, the SRU might
need to put the SoC of its storage back at the preferred level
by either purchasing (or selling) electricity [7] or participating
in a pure downward (or upward) regulation service.

The specific technical contributions of this paper are:

1) We first study the SoC-neutral contractual framework.
For a single contract, we propose an algorithm to compute
the regulation parameters R and r that the SRU should
declare, given its initial SoC, to maximize its reward
while ensuring that the risk of regulation failure is zero.
We show that to obtain the highest possible reward in
consecutive contracts in the SoC-neutral framework, the
SRU needs to put the initial SoC of its storage at half of
the storage capacity regardless of the EST parameters (for
instance, charging and discharging rates and efficiences).

2) We then study the energy-neutral framework, first in the
context of a single contract (as above) and then propose
algorithms to quantify, ahead of time, the reward that an
SRU could obtain in successive contracts using analytical
upper and lower bounds.

3) We apply our techniques to gain engineering insights on
the use of Lead-Acid and Li-ion ESTs for regulation, and
empirically compare the rewards obtained for different
technologies and contractual frameworks. We show that

an energy-neutral framework provides an excellent trade-

off in terms of gains for the SRU and ease of implemen-

tation for the operator.

We now discuss the related work before presenting the main
technical contributions of this paper.

II. LITERATURE BACKGROUND

A comprehensive overview of the conventional regulation
services is provided in [3]. Recent studies have shown that as
an alternative to conventional RUs, ESTs can provide fast and
accurate regulation services [4]-[5], although some practical
challenges, for instance energy storage management [2], [6],
still remain. Several studies have indicated that regulation
failures, i.e., when an SRU is unable to fulfill its contractual
obligations because it is either fully depleted or at capacity,
are a major concern for SRUs.

To avoid regulation failures, operators have tried to treat
SRUs differently by combining them with hydro power plants
[1], or allowing SRUs to purchase (or sell) electricity [7].
However, these approaches are not always feasible, for in-
stance it is not always possible to co-locate with a hydro-
power facility, and do not reduce the risk of regulation failure
to zero since perfect estimation of the SoC in the future is
impossible.

In 2005, CAISO developed a new algorithm, called ACE

smoothing [2], [8], in which the regulation signal is broken
up into a slow moving component (computed using a rolling
average) and the remaining fast component that has zero mean.
The former, because it is slow moving, is better suited for
conventional generators with slow response times. The fast

moving component is best suited for SRUs because of their
fast response times and since it helps SRUs to maintain their
SoC closer to the preferred level in consecutive contracts.

In our previous work [9], we have focused on the existing
contractual framework in which the operator only guarantees
that the regulation signals will lie between r and R, and
provided algorithms to allow SRUs to optimize its reward over
a single contract, and determine lower and upper bounds on
the reward over several successive contracts. However, in the
existing framework, there is no constraint on the operator to
only provide SoC- or energy-neutral signals. We believe that
the analytical study provided in this paper is the first of its
kind that enables SRUs to maximize and estimate rewards for
the energy-neutral and SoC-neutral contractual frameworks.

III. SYSTEM MODEL

Consider an SRU that offers regulation services in a region
whose power system is controlled by an independent system
operator. We assume that the time is slotted in time-slot (ts) of
size δ, and that the duration of each contract is K time-slots,
i.e., D = Kδ. At the beginning of a contract, the SRU selects
its regulation parameters R and r so that it can always respond
to the regulation signals without any failure. We assume that
the operator always accepts the declared parameters R and r.

A. EST Model

We assume that the SRU is using a non-ideal battery of
size B′ (Watt-hour), with charging efficiency ec, discharging
efficiency ed, maximum charging and discharging power limits
∆c and ∆d (Watt), respectively, and depth of discharge (DoD)
η. Hence, the available capacity of the battery is equal to
B = ηB′. The energy stored in an energy storage decays ex-
ponentially with a certain time constant whose value depends
on the storage technology. This time constant is more than one
year for batteries [10]. In this study, we neglect the impact of
self-discharge since we study regulation services over a period
of time which is less than 24 hours.

To present the SoC evolution model for electrochemical
batteries, let us focus on one contract, and let b(k) denote
the SoC of the storage at the end of ts k. During the contract,
the SRU will receive a sequence of signals {s1, · · · , sK}. The
SRU has to supply constant power sk during time-slot k if sk
is positive, and draw constant power (−sk) from the grid if it
is negative. Therefore, b(k) evolves as follows:

b(k) = b(k − 1)− edδ[sk]
+ + ecδ[−sk]

+ ∀k ∈ K (1)

where b(0) = U is the initial SoC, K = {1, . . . ,K}, and [x]+

is equal to x if x ≥ 0; otherwise, it is zero. By convention, in
this model, we have ec ≤ 1 ≤ ed.

B. Frequency Regulation Market

In a regulation service, the SRU is rewarded for its flexibility
in terms of the regulation parameters R and r, and for what
it actually supplies/draws during the contract. To select the
values of the downward and upward regulation parameters,
we focus on the fixed part of the reward, and assume that, in
contract Cn, the SRU is paid a fixed price an ≥ 0 (resp. bn ≥
0) per Watt of upward regulation (resp. downward regulation)
for the contract duration D. Therefore, the fixed part of the



regulation reward in a contract Cn with regulation parameters
Rn and rn is calculated by

f(Rn, |rn|) = (anRn + bn|rn|)D (in dollars) . (2)

Next, we propose and study the SoC-neutral and energy-
neutral contractual frameworks.

IV. SOC-NEUTRAL FRAMEWORK

In the SoC-neutral contractual framework, the operator
commits to generating a sequence of regulation signals {sk}
so that the SoC at the end of the contract is the same as the
SoC, U , at the beginning of the contract, i.e., the regulation
signals obey the following constraints:

ed

K∑

k=1

[sk]
+
= ec

K∑

k=1

[−sk]
+

(3)

r ≤ sk ≤ R k ∈ K (4)

The SRU can provide any power in the range [r, R] in
response to the regulation signals {sk} if and only if the
following constraints are satisfied:

0 ≤ b(k) ≤ B ∀k ∈ K (5)

[−sk]
+ ≤ ∆c ∀k ∈ K (6)

[sk]
+ ≤ ∆d ∀k ∈ K . (7)

The main constraint imposed on the regulation signals is (3).
Using this information, the SRU chooses its parameters R and
r so that it can respond to all feasible sequences of regulation
signals {sk} without any failure, and its reward f(R, |r|) is
maximized. We first compute the optimal values of R, r, and
U for one single contract of duration D = Kδ. Then, we focus
on N successive contracts.

A. Single Contract

Consider one single contract in which the operator provides
regulation signals to the SRU so that obey (3). Starting with
an initial SoC U , we are interested in finding the (R, r) pair
with the largest reward for that U . Then, we find the U that
yields largest reward over all values of U . We will do so in
three steps. In the first step, we characterize the worst-case
sequences of regulation signals that an operator can send to
the SRU for a given (R, r). By “worst-case”, we mean the
sequences of regulation signals that would result in the highest
or lowest SoC levels during a contract duration. Then, in the
second step, we develop an algorithm to compute the pair
(R, r) that maximizes the reward given U . In the third step,
we will select the value of the initial SoC U⋆ for which the
SRU obtains the highest possible reward.
STEP 1 : Given (R, r), we first observe that the sequence
that would generate the highest (resp. lowest) SoC during
a contract duration consists of a series of upwards (resp.
downwards) regulation signals, followed by a series of down-
wards (resp. upwards) regulation signals. We characterize
these worst-case sequences below.

We start with the sequence of regulation signals, πm, that
results in the highest SoC level. The sequence starts with qm
time-slots of regulation signal r, where

qm =

⌈
(K − 1)edR+ ecr

(ec|r|+ edR)

⌉
(8)

while the last pm = (K − 1 − qm) time-slots have regu-
lation signal R. There is a single time-slot in between the
two, i.e., the (qm + 1)th time-slot, with regulation signal

(−wm)
(

1
ec
1{wm>0} +

1
ed
1{wm≤0}

)
, where wm = (edpmR+

ecqmr). The sequence that provides the lowest SoC level, πM ,
is the same as above except that it occurs in reverse order.

Although we do not provide our formal proof for the worst-
case sequences above due to space constraints, we do note that,
intuitively, if the signals were continuous then the worst-case
sequences would be either a sequence of positive signals (all
equal to R) followed by a sequence of negative signals (all
equal to r) or a sequence of negative signals (all equal to r)
followed by a sequence of positive signals (all equal to R).
Call these sequences triangular sequences. This is in fact the

case when
(K−1)Red+ecr

(ec|r|+edR) is an integer. However, if it is not an

integer, the worst-case sequences will be either a sequence of
positive signals (all equal to R) followed by a single time-slot
where the signal is not R or r, followed by a sequence of
negative signals (all equal to r) or the reverse. We call these
sequences trapezoidal sequences since there exists one single
time-slot in which the signal is different from r and R.
STEP 2 : For the pair (R, r) to be feasible given an initial SoC
U , the SoC should always remain in the range [0, B] for the
corresponding worst-case sequences πm and πM determined in
Step 1. We use our characterization of the worst cast sequences
as the basis of a simple algorithm to find the pair (R, r) with
the largest reward. In this algorithm, we first fix the number of
downward regulation signals which are equal to the downward
regulation effort r at qm ∈ {1, · · · ,K − 1}. For a trapezoidal
sequence, the number of upward regulation signals which are
equal to the upward regulation effort R will be pm = K−1−
qm, while for a triangular sequence pm = K−qm. Finally, we
compute the reward corresponding to each combination of qm
and pm, and select the pair (R, r) that maximizes the reward.
The following result provides a simple tool to find the optimal
values of the parameters R and r for a given initial SoC, U .

Lemma 1. Given ec, ed, ∆c, ∆d, U , δ, B, the reward function

f(R, |r|), and with qm ∈ {1, · · · ,K − 2} and pm = K − 1−
qm, or qm ∈ {1, · · · ,K − 1} and pm = K − qm, the pair

(R, r) that maximizes the reward, can be computed by

R(qm, pm) , min

{
∆d,

ecqm
edpm

∆c,
B − U

edδpm
,

U

edδpm

}
(9a)

|r(qm, pm)| , min

{
∆c,

edpm
ecqm

∆d,
B − U

ecδqm
,

U

ecδqm

}
. (9b)

A formal description of the proposed algorithm to compute
the optimal values of R and r is provided in Algorithm 1.
Next, we select the value of the initial SoC U⋆ for which the
SRU obtains the highest possible reward.
STEP 3 : Given a set of parameters B, K , δ, ∆c, ∆d, ed, and
ec, different values of the initial SoC U can result in different
rewards. Let U⋆ be the (set of) initial SoCs for which the SRU
obtains the maximum reward. The following result shows that
B
2 ∈ U⋆ irrespective of the values of the regulation prices
a and b and the EST parameters. The sketch of the proof is
provided in the appendix.



Algorithm 1 The SoC-neutral algorithm

1: Compute the reward f
(
R(qm, pm), |r(qm, pm)|

)
using

(9a) and (9b) for all combinations of qm and pm with
either qm ∈ {1, · · · ,K − 2} and pm = K − 1 − qm, or
qm ∈ {1, · · · ,K − 1} and pm = K − qm.

2: Select the pair
(
R(qm, pm), r(qm, pm)

)
which maximizes

the reward.

Lemma 2. Given B, K , δ, ∆d, ∆c, ed, ec, a, and b, let U⋆

denote the set of all initial SoC for which the SRU obtains

maximum reward. Then, we have: B
2 ∈ U⋆.

B. Multiple Contracts

Let us assume that the SRU bids for a set of N consecutive
contracts of total duration T = ND, and that U1 = B/2
denotes the SoC at the beginning of the first contract. The
SRU can bid for multiple contracts without any concern
for the SoC at the end of each contract since the operator
provides regulation signals that keep the SoC at the end of
each contract to be U1. Hence, given an, bn, and Un = B/2
for all n ∈ {1, · · · , N}, the SRU can compute the reward

FT =
∑N

n=1 fn(Rn, |rn|) that can be obtained over the N
contracts. Next, we focus on the energy-neutral framework.

V. ENERGY-NEUTRAL FRAMEWORK

In the energy-neutral contractual framework, the operator
commits to generate a sequence of regulation signals {sk} so
that the energy supplied by the SRU is equal to the energy
absorbed by the SRU, i.e., the regulation signals obey the
following constraints:

K∑

k=1

[sk]
+
=

K∑

k=1

[−sk]
+

(10)

The SRU can respond to any sequence of regulation signals
{sk} if and only if the constraints (5)-(7) are satisfied. The
SRU knows that the regulation signals obey (4) and (10).
Using this information, the SRU selects its parameters R
and r so that it can respond to all possible sequences of
regulation signals {sk} without any failure, and his reward
f(R, |r|) is maximized. We first compute the values of R
and r that maximize the reward for one single contract of
duration D = Kδ, given the initial SoC U . Then, we focus
on N successive contracts, and quantify the reward that can
be obtained over the N contracts.

A. Single contract

The arguments for the single contract case in the energy-
neutral contract follow the same lines as those for the SoC-
neutral contract, and are therefore not repeated here for the
sake of brevity. The sequence of regulation signals, πm, that
results in the highest SoC level starts with qm time-slots of
regulation signal r, where

qm =

⌈
(K − 1)R+ r

(|r|+R)

⌉
(11)

while the last pm = (K − 1 − qm) time-slots have regu-
lation signal R. There is a single time-slot in between the
two, i.e., the (qm + 1)th time-slot, with regulation signal

(−wm)
(

1
ec
1{wm>0} +

1
ed
1{wm≤0}

)
where wm is equal to

(edpmR+ ecqmr).

Lemma 3. Given ec, ed, ∆c, ∆d, U , δ, B, the reward function

f(R, |r|), and with qm ∈ {1, · · · ,K − 2} and pm = K − 1−
qm, or qm ∈ {1, · · · ,K − 1} and pm = K − qm, the pair

(R, r) that maximizes the reward, can be computed by

R̂(qm, pm) , min

{
∆d,

qm
pm

∆c,
B − U

ecδpm
,

U

edδpm

}
(12a)

|r̂(qm, pm)| , min

{
∆c,

pm
qm

∆d,
B − U

ecδqm
,

U

edδqm

}
. (12b)

A formal description of the proposed algorithm to compute
the optimal values of R and r is provided in Algorithm 2.

Algorithm 2 The energy-neutral algorithm

1: Compute the reward f
(
R̂(qm, pm), |r̂(qm, pm)|

)
by us-

ing (12a) and (12b) for all combinations of qm and pm
with either qm =∈ {1, · · · ,K−2} and pm = K−1−qm
or qm ∈ {1, · · · ,K − 1} and pm = K − qm.

2: Select the pair
(
R̂(qm, pm), r̂(qm, pm)

)
which maxi-

mizes the reward.

Our analytical results in (12a) and (12b) show that the
optimal values of the regulation parameters R and r depend
on the value of the initial SoC U . We can verify that the value
of the initial SoC U⋆ for which the SRU obtains the highest
possible reward, is equal to B/(1 + ec

ed
).

B. Multiple contracts

Let us assume that the SRU bids for a set of N consecutive
contracts of total duration T = ND, and that the SoC at the
beginning of the first contract is fixed and known. The reward

in contract Cn is a function of the parameters R̂n and r̂n

which are functions of the SoC at the beginning of the contract

(we call it Un). Since U1 is fixed and known, R̂1 and r̂1 can
be computed by using Algorithm 2. The value of Un for n > 1
depends on the sequences of regulation signals being produced
by the operator during contracts C1, · · · , Cn−1. Since the
sequences that can be sent by the operator, are unknown a

priori, the initial SoC Un as well as the reward fn(R̂n, |r̂n|)
are random variables. We characterize a priori the reward

FT =
∑N

n=1 fn(R̂n, |r̂n|) that the SRU can obtain over the
N contracts, by providing upper and lower bounds on FT .

Upper and Lower Bounds: Let us begin with a single
contract n, and assume that we do not know the initial SoC
Un at the beginning of that contract. We compute upper and
lower bounds on the reward that can be obtained in contract
Cn in two steps. In the first step, we find upper and lower
bounds on the SoC at the beginning of contract Cn. In the
second step, we compute the maximum and minimum reward
that can be obtained by the SRU, knowing that the initial SoC
Un is in the range [Lbn, Ubn] where Ubn and Lbn denote the
computed upper and lower bounds on Un, respectively.

To compute upper and lower bound on Un, let En denote
the amount of energy supplied by the SRU in contract Cn,

i.e.,
∑K

k=1 [sk]
+

. In the energy-neutral framework, the amount



of energy absorbed by the SRU in one single contract is
equal to the amount of energy supplied by the SRU in the
contract. Therefore, the storage supplies (resp. draws) edEn

(resp. ecEn) units of energy in contract Cn. Hence, the SoC
at the end of contract n is equal to Un−1 + (ec − ed)En−1.
Since the charging efficiency ec is less than or equal to the
discharging efficiency ed, we can verify that Un ∈ [Un−1 +
(ec − ed)Ên−1, Un−1] where Ên−1 is an upper bound on the
maximum amount of energy which can be supplied by the
SRU in contract Cn−1 given the initial SoC Un−1. Using this
observation, we can verify that Ubn = U1 for all n.

Using the result in Lemma 3, we find that we can take Ên−1

to be equal to the minimum of
Un−1

ed
and (B − Un−1)/ec.

We use this property as the basis of an algorithm to compute
iteratively the value of Lbn for all n. At each iteration n, we
assume that the initial SoC Un is equal to Lbn, and compute

the values of R̂n, r̂n, and Ên. We then take Lbn+1 to be equal

to Lbn+(ec − ed)Ên. The following result shows that Lbn+
(ec − ed)Ên is a lower bound on the initial SoC in contract
Cn+1. A sketch of the proof is provided in the appendix.

Lemma 4. Given B, ec, ed, and Lbn, let Ên =
min {(B − Lbn)/ec, (Lbn/ed)}. Then, Lbn + (ec − ed)Ên is

a lower bound on the initial SoC in contract Cn+1.

In the proposed algorithm, we first fix Lb1 = U1, and

compute the values of the parameters R̂1, r̂1, and Ê1. We

then take the value of Lb2 to be equal to (U1 +(ec − ed)Ê1),
and compute R̂2, r̂2, and Ê2 assuming that U2 = Lb2. By
doing the same process for C3, · · · , Cn, we can compute the
lower bound Lbn for all the N contracts. A formal description
of the algorithm is provided in Algorithm 3.

To compute upper and lower bounds on FT , let fn and

fn denote the maximum and minimum values of fn(R̂n, |r̂n|)
over [Lbn, U1], respectively. Proposition 1 derives the values
of U at which fn and fn are attained. The proof follows by

using Lemma 3. The lemma shows that the minimum of U
ed

and (B − U)/ec is one of the parameters that determine the
reward, and that the values of U at which the maximum and
minimum values fn and fn, respectively, are achieved, do not
depend on the prices an and bn. Due to space limitations, we
do not present the proof.

Proposition 1. Let an ≥ 0 and bn ≥ 0 denote the prices for

each unit of upward and downward regulation in contract n.

Given ec, ed, B, U1, and Lbn, the maximum and minimum

values of fn(R̂n, |r̂n|) over [Lbn, U1] are attained at Un and

Un, respectively, where

Case 1) If U1 ≤ edB
ed+ec

, then

Un = Lbn, Un = U1.

Case 2) If U1 > edB
ed+ec

and Lbn ≥ edB
ed+ec

, then

Un = U1, Un = Lbn.

Case 3) If U1 > edB
ed+ec

, Lbn < edB
ed+ec

, and B−U1

ec
< Lbn

ed
, then

Un = U1, Un =
edB

ed + ec
.
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Fig. 1. Lead-acid: The lower and upper bounds on FT , as a function of B′

for D = 1 h and U1 = B/2.

TABLE I
STORAGE CHARACTERISTICS [10], [11]

Storage technology Lead-acid Lithium-ion

Charging efficiency ec 0.75 0.85
Discharging efficiency ed 1 1

Charge time α 10 h 3 h
Discharge time γ 1 h 36 min

DoD η 0.8 0.8

Case 4) If U1 > edB
ed+ec

, Lbn < edB
ed+ec

, and B−U1

ec
≥ Lbn

ed
, then

Un = Lbn, Un =
edB

ed + ec
.

Given an, bn, and Un (resp. Un), we can compute the lower

bound fn (resp. the upper bound fn) by computing the value

of fn(R̂n, |r̂n|) at U = Un (resp. at U = Un). The reward
FT over the N contracts is then bounded as follows:

N∑

n=1

fn ≤ FT ≤

N∑

n=1

fn . (13)

Note that in the energy-neutral framework, the battery will
eventually discharge since Ubn = U1 and Lbn+1 = Lbn +
(ec − ed)Ên with (ec − ed) ≤ 0 and Ên ≥ 0. Therefore, after
a limited number of contracts, the SRU will not be able to
participate in an energy-neutral contract. The SRU can either
purchase electricity from the market or participate in a pure
downward regulation service to charge its battery.

Algorithm 3 The algorithm to compute Lbn
1: Initialize: Lb1 = U1, n = 1
2: Repeat

3: Given Un = Lbn, compute R̂n, r̂n, and Ên

4: Set Lbn+1 = Lbn + (ec − ed)Ên

5: Set n = n+ 1
6: Until n = N

In the next section, we provide engineering insights based
on our analytical results, i.e., the proposed lower and upper
bounds on FT in the energy-neutral framework, and the exact
value of the reward FT in the SoC-neutral framework.
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Fig. 2. Lithium-ion: The lower and upper bounds on FT , as a function of
B′ for D = 1 h and U1 = B/2.
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Fig. 3. Lead-acid: The lower and upper bounds on FT , as a function of U1

for B′
= 20 MWh.

VI. NUMERICAL RESULTS

In this paper, we consider two of the battery technologies
that have been considered in the literature as potential candi-
dates to offer a regulation service, namely Lead-acid (LA) and
Lithium-ion (LI). The depth-of-discharge (DoD) is given by η
and therefore the effective battery capacity, B′ equals ηB. To
determine the maximum charging and discharging limits, ∆c

and ∆d respectively, we use published data on the charge and
discharge times, α and γ respectively, for the two technologies.
That is, ∆c = B′/α and ∆d = B′/γ. The battery technology
parameters used in this study are summarized in Table I.

The number of time-slots in each contract is set to K =
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Fig. 4. Lithium-ion: The lower and upper bounds on FT , as a function of
U1 for B′

= 20 MWh.
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Fig. 5. Lithium-ion: The lower and upper bounds on FT , as a function of
D for B′

= 20 MWh, δ = 1 min, and U1 that maximizes the lower bound.

12, the duration of a contract is assumed to be D = 1 hour,
such that each time-slot is δ = 5 minutes long. Rewards are
computed over 10 successive contracts (i.e., T = 10 hours) and
an = bn = 1 $/(h MW). Finally, unless otherwise stated, the
initial SoC at the beginning of the first contract is U1 = B/2.

We compute the average reward as well as the lower and
upper bounds on FT for the existing framework using [9],
the lower and upper bounds proposed in Section V-B for the
energy-neutral framework, and the exact value of the reward
FT for the SoC-neutral framework. Figures 1-2 compare the
three contractual frameworks in terms of the minimum and
maximum reward as a function of battery capacity, for LA and
LI, respectively. Our numerical results show that the minimum
achievable reward with the SoC-neutral and energy-neutral
frameworks is significantly larger than the maximum achiev-
able reward by the existing framework, i.e., from the SRU
standpoint, the SoC-neutral and the energy-neutral frameworks

are significantly more beneficial than the existing framework.

The results also show that the achievable reward with the
SoC-neutral framework is between the minimum and max-
imum achievable rewards by the energy-neutral framework.
We note, however, that if the number of contract durations
over which reward is computed increases, we expect that the
SoC neutral framework will provide strictly higher rewards
since it enables us to maintain the SoC at the preferred level
over successive contracts. Finally, we also observe that LI
provides greater rewards than LA in all the three contractual
frameworks for a given B′. We have obtained similar results
for different values of D and T .

To understand the impact of the initial SoC charge U1 on the
SRU’s reward FT , we compute and plot the lower and upper
bounds on FT as a function of U1 for the existing and energy-
neutral frameworks, and the exact value of the reward FT for
the SoC-neutral framework, for LA and LI in Fig. 3 and Fig. 4,
respectively. We observe that for both battery technologies, the
reward in the energy-neutral contract has greater sensitivity
to the choice of U1 than in the SoC-neutral contract. Thus,
although operators might prefer energy-neutral contracts since
it obviates the need for the operator to consider the technology
parameters of the EST used by each SRU, SRUs might prefer
SoC-neutral contracts for their predictability.

The SRU could also influence the operator to negotiate a
contract duration which is favorable to its storage technology.



To understand the impact of varying the contract duration D
(equivalently, varying K with δ fixed) on the SRU’s reward
in different frameworks, we consider a period of length 10
hours (i.e., T = 10 h), and take B = 20 MWh and δ = 1
minute. The results for LI are shown in Fig. 5 (results for LA
are similar and thus omitted due to space constraints). Our
numerical results show that while reward decreases for longer
contracts with the existing framework, the opposite is true for
the energy- and SoC-neutral frameworks. The results show that
beyond a contract duration of 30 minutes, the reward for both
the SoC- and energy-neutral contracts are relatively insensitive
to D, while this is not the case for the existing framework.

VII. CONCLUSION

This paper provides tools to quantify offline the reward an
SRU could expect for the energy-neutral contractual frame-
work as well as for the SoC-neutral framework. This paper
takes the standpoint of the SRU. We plan to address the
operator’s standpoint in a subsequent paper.

APPENDIX

Although we cannot provide complete proofs due to space
constraints, we provide below sketches of our proofs.

Proof of Lemma 1: Let us assume that pm = K − qm.
Given qm and pm, we can construct the worst-case sequence
πm that can be sent by the operator. Given an initial SoC U ,
a pair (R, r) with the worst-case sequence πm can be chosen
by the SRU if the value of the SoC at this sequence is in the
range [0, B]. Let s̄m denote the (qm + 1)th signal, i.e., s̄m =

(−wm)
(

1
ec
1{wm>0} +

1
ed
1{wm≤0}

)
where wm = (edpmR+

ecqmr). To find the pair (R, r) that maximizes the reward
function f(R, |r|), we consider the following cases:

1) Pairs (R, r) for which 0 ≤ s̄m ≤ R: the SoC will be in
the range [0, B] iff ecqm

ed(pm+1) |r| ≤ R and R ≤ ecqm
edpm

|r|.

2) Pairs (R, r) for which r ≤ s̄m ≤ 0: the SoC will be in

the range [0, B] iff ecqm
edpm

|r| ≤ R and R ≤ ec(qm+1)
edpm

|r|.

Therefore, the only possible scenario is to have s̄m ≥ 0.
Let us focus on pairs (R, r) for which 0 ≤ s̄m ≤ R.

Using the definition of s̄m, we can show that the SoC

will be in the range [0, B] iff |r| ≤ min {B−U,U}
ecδqm

. We

also need to make sure that |r| ≤ ∆c. Therefore, the pair
(R1, r1) where |r1| = |r0|, R1 = ecqm

ed(pm+1) |r1|, and |r0| =

min
{
∆c,

B−U
ecδqm

, U
ecδqm

}
, maximizes the reward among all

feasible pair for which 0 ≤ s̄m ≤ R. Similarly, we can show
that the pair (R2, r2) where R2 = R0, |r2| =

edpM

ec(qM+1)R0,

and R0 = min
{
∆d,

B−U
edδpM

, U
edδpM

}
, maximizes the reward

among all feasible pairs for which r ≤ s̄M ≤ 0. Note that
the pairs (R1, r1) and (R2, |r2|) do not necessarily satisfy
R ≤ ∆d and |r| ≤ ∆c, respectively. The optimal pair at
which all the physical constraints are satisfied is (R, |r|) where
R = min (R1, R2) and min (|r1|, |r2|). The case at which
pm = K − 1 − qm can be proved by following the same
argument as above.

Proof of Lemma 2: Let us assume that B
2 /∈ U⋆. Hence,

there exists U0 ∈ U⋆ (U0 6= B
2 ) for which there exist pair

(R0, r0) and worst-case sequences πM and πm such that the
value of the SoC for these sequences is in the range [0, B] and

the reward is equal to z⋆. Since all feasible sequences π for the
pair (R0, r0) obey (3), the maximum charging (or discharging)
energy in one contract is less than or equal to B

2 . Therefore,

the initial SoC B
2 ∈ U⋆. This results in a contradiction.

Proof of Lemma 4: Claim: For any two values of Ua, Ub ∈
[Lbn, U1] with Ua ≥ Ub, we have:

Ua + (ec − ed)Ên(Ua) ≥ Ub + (ec − ed)Ên(Ub)

where Ên(U) = min {(B − U)/ec, (U/ed)} is an upper
bound on the maximum amount of energy that can be supplied
by the SRU in contract Cn when the initial SoC equals U .

Proof : Let us consider the following three cases: 1) Ub ≤
U⋆ ≤ Ua, 2) Ub ≤ Ua ≤ U⋆, and 3) U⋆ ≤ Ub ≤ Ua, where
U⋆ = edB

ec+ed
. Without loss of generalities, let us assume that

Ub = Ua − x where Ua − U⋆ ≤ x ≤ Ua. Let us focus on the
first case, and define P (Ua, x) as follows:

P (Ua, x) ,
(
Ua + (ec − ed)Ên(Ua)

)

−
(
(Ua − x) + (ec − ed)Ên(Ua − x)

)

By using the definition of Ên(U), we can verify that

P (Ua, x) = B(1−
ed
ec

) + Ua(
ed
ec

−
ec
ed

) + x
ec
ed

where U⋆ ≤ Ua ≤ B and Ua − U⋆ ≤ x ≤ Ua. We need to
show that P ≥ 0 for all possible values of Ua and x. Since P is
increasing in x, the minimum of P is attained at x = Ua−U⋆.
Since ed ≥ ec, P (Ua, Ua−U⋆) is increasing in Ua. Therefore,
the minimum of P is attained at Ua = U⋆ and x = 0. Since
P (U⋆, 0) = 0, we have P ≥ 0 for all Ua, Ub ∈ [Lbn, U1]
with Ub ≤ U⋆ ≤ Ua. We can prove the result for the other
two cases by following the same argument. This completes
the proof of the claim. The main result now follows by using
the claim above, and the fact that Un ∈ [Lbn, U1].
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