
Multimedia Systems manuscript No.
(will be inserted by the editor)

Dongyan Xu · Sunil Suresh Kulkarni · Catherine Rosenberg · Heung-Keung Chai

Analysis of a CDN-P2P Hybrid Architecture for Cost-Effective
Streaming Media Distribution

the date of receipt and acceptance should be inserted later

Abstract To distribute video and audio data in real-time
streaming mode, two different technologies - Content Distri-
bution Network (CDN) and Peer-to-Peer (P2P) - have been
proposed. However, both technologies have their own limi-
tations: CDN servers are expensive to deploy and maintain,
and consequently incur a cost for media providers and/or
clients for server capacity reservation. On the other hand,
a P2P-based architecture requires sufficient number of seed
supplying peers to jumpstart the distribution process. Com-
pared with a CDN server, a peer usually offers much lower
out-bound streaming rate and hence multiple peers must jointly
stream a media data to a requesting peer. Furthermore, it is
not clear how to determine how much a peer should con-
tribute back to the system after receiving the media data, in
order to sustain the overall media distribution capacity.

In this paper, we propose and analyze a novel hybrid ar-
chitecture that integrates both CDN and P2P based stream-
ing media distribution. The architecture is highly cost-effective:
it significantly lowers the cost of CDN capacity reservation,
without compromising the media quality delivered. In par-
ticular, we propose and compare different limited contribu-
tion policies for peers that request a media data, so that the
streaming capacity of each peer can be exploited on a fair
and limited basis. We present: (1) in-depth analysis of the
proposed architecture under different contribution policies,
and (2) extensive simulation results which validate the anal-

Dongyan Xu
Department of Computer Science, Purdue University, West Lafayette,
IN 47907, USA
E-mail: dxu@cs.purdue.edu

Sunil Suresh Kulkarni
Google Inc., Mountain View, CA 94043, USA
E-mail: sunilkul@gmail.com

Catherine Rosenberg
Department of Electrical and Computer Engineering, University of
Waterloo, Waterloo, Ontario N2L 3G1, Canada
E-mail: cath@ece.uwaterloo.ca

Heung-Keung Chai
School of Electrical and Computer Engineering, Purdue University,
West Lafayette, IN 47907, USA
E-mail: chai@ecn.purdue.edu

ysis. Our analytical and simulation results form a rigorous
basis for the planning and dimensioning of the hybrid archi-
tecture.

Keywords Peer-to-peer systems · Multimedia streaming ·
Content distribution networks

1 Introduction

The proliferation of high-speed, broadband networking tech-
nologies has made real-time media streaming a reality. It is
increasingly feasible to distribute video and audio data in
real-time streaming mode. In fact, streaming media distri-
bution has been an intensively studied research topic in the
past few years. Among the most established technologies is
the Content Distribution Network (CDN), where a number
of CDN servers are deployed at the edge of the Internet, and
clients request media streaming service from their closest
CDN servers. More recently, peer-to-peer (P2P) based me-
dia distribution architectures have quickly gained popular-
ity, where clients store the media data after the streaming
service, and act as supplying peers by streaming the media
data to other requesting clients (peers). However, we argue
that both CDN-based and P2P-based architectures have their
advantages and disadvantages, and each architecture alone
does not provide a cost-effective and scalable solution to
streaming media distribution.

In a CDN architecture, a media file is first pushed to mul-
tiple CDN servers, each of which serves clients in its desig-
nated domain(s). A CDN server has dedicated storage space
and out-bound bandwidth for high-quality media streaming.
However, CDN servers are expensive to deploy and main-
tain. The server capacity (including processing power and
out-bound bandwidth) that can be allocated to the distribu-
tion of one media file is limited, and it incurs a non-trivial
cost to the provider and/or clients of this media file. For ex-
ample, until recently, users had to pay a subscription fee to
view streaming videos on CNN.com. There exist solutions
to CDN cost control, which adaptively degrade the media
quality according to the rate of client requests, and therefore

2 Dongyan Xu et al.

bounding the CDN server capacity requirement. The down-
side of such solutions is that they compromise the quality of
service received by individual clients.

On the other hand, P2P media streaming exhibits a more
de-centralized nature: After clients receive the media data,
they will act as supplying peers and stream the data to other
requesting clients (Note that we will use the terms peers and
clients interchangeably for the rest of this paper). A P2P
streaming session takes place between peers, without involv-
ing a CDN server. Such a P2P architecture exploits the grow-
ing aggregated streaming capacity of individual supplying
peers, and therefore provides a more economical way to dis-
seminate the media content among peers. However, the P2P
architecture has its own problems. First, it needs a sufficient
number of seed supplying peers to jumpstart. Second, com-
pared with a CDN server, a peer is only able or willing to of-
fer a much lower out-bound streaming rate; probably lower
than the playback rate of the media data. Finally, it is not
clear how much a peer should contribute back to the system
in order to sustain the aggregated media distribution capac-
ity, while maintaining fairness among peers. To the best of
our knowledge, this problem has not been addressed in the
context of P2P streaming media distribution.

In this paper, we propose a novel hybrid architecture that
integrates CDN and P2P based streaming media distribution.
In this architecture, the two streaming technologies comple-
ment each other: When a media file needs to be distributed
to a community of clients, the file will first be distributed by
a CDN server1; and a fraction of the CDN server capacity
will be reserved for this media data. While fulfilling stream-
ing requests from clients, the CDN server will create the
seed supplying peers in its service area. Together, the CDN
server and the dynamically created supplying peers serve the
streaming media requests with much higher capacity than
that of the server alone. More importantly, when the P2P
streaming capacity grows to a certain level, the CDN server
can even stop serving streaming sessions for this media file
and let the peers take over the task. We call this transition
a “CDN-to-P2P” handoff. After the handoff, the reserved
CDN server capacity for this media data can be released,
saving the cost for the provider and/or clients.

Both the jumpstarting and growth of media streaming
capacity are key to the cost-effectiveness of the hybrid ar-
chitecture; and they are critically dependent on the contri-
butions made by individual peers. In this paper, we propose
three limited contribution policies: Each peer, upon the re-
ceipt of the media file, becomes a supplying peer but only
commits a limited out-bound streaming rate to each stream-
ing session. A supplying peer is also committed to serve
(1) a limited number of P2P streaming sessions, or (2) P2P
streaming sessions within a limited period of time, or (3) a
combination of both (1) and (2). After fulfilling its commit-
ment, the supplying peer can discard the media file and re-
tire from the distribution process. Each of these policies pro-

1 In general, more than one CDN server will be involved to serve
clients in different domains. In this paper, we focus on one of the
servers as well as the clients it serves.

vides some level of fairness among the supplying peers: the
higher the committed out-bound streaming rate, the lower
the committed number of sessions and/or the shorter the pe-
riod of service time.

The main contributions of this paper are as follows: (1)
The proposed hybrid architecture combines CDN and P2P
technologies with integrated capacity planning and runtime
operations. (2) The suite of limited contribution policies ad-
vocate and reflect fairness toward peers. (3) The analysis
and simulations reveal the impact of different policies and
parameters on the progress, cost, and peer load of a media
distribution process, and therefore provide a rigorous basis
for the dimensioning of the hybrid architecture and for the
design of other variations of the contribution policy.

The roadmap of the paper is as follows: Section 2 presents
an overview of the hybrid architecture, including its compo-
nents, operations, and policies. In Section 3, we present the
session-based limited contribution policy, as well as a de-
tailed quantitative analysis of the policy. In particular, we de-
rive a close-form expression for calculating the handoff time
when the CDN server capacity reservation can be released.
The analysis will also be validated by simulation results in
the same section. Observing that the session-based contri-
bution policy has certain operational inconvenience as seen
by the peers, we introduce the time-based limited contribu-
tion policy in Section 4, and present its quantitative analysis
along with simulation results. From this, we realize that a
better design of the contribution policy should integrate both
session and time commitments. Hence we introduce an inte-
grated limited contribution policy in Section 5 and illustrate
its advantage through simulations. In the same section, we
present guidelines for the planning and dimensioning of the
hybrid CDN-P2P architecture. Section 6 compares our work
with related work. Finally, we conclude this paper in Section
7.

2 System Architecture and Operations

2.1 System Architecture

The proposed hybrid architecture is shown in Figure 1. We
only show one CDN server2 because we focus on the inter-
action between one CDN server and the clients in its service
area/domain(s).

– The CDN server in our architecture plays two roles: (1)
the actual media streaming server and (2) the P2P in-
dex server. For the distribution of a media file, the CDN
server reserves a certain amount streaming capacity for a
limited period of time. Throughout the distribution pro-
cess, the CDN server also maintains a list of clients regis-
tered for the media file, as well as a list of active supply-
ing peers (among the registered clients) and their contri-
bution fulfillment status. Note that both the handoff and

2 The CDN server is a logical entity - it may consist of multiple
physical servers.

Analysis of a CDN-P2P Hybrid Architecture for Cost-Effective Streaming Media Distribution 3

Retired Peers

CDN Server

Peer−to−peer streaming

Streaming
CDN−based

Requesting Peers

Clients served by CDN server

Supplying Peers

.

Key

Media Files

System
Indexes to P2P

����������

�������
�������
�������
�������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Speed

Disk

High

Fig. 1 The hybrid architecture for streaming media distribution (dif-
ferent size of peers indicating their different out-bound streaming rate
contribution)

the supplying peers are specific to a media file. Before
the “CDN-to-P2P” handoff, a streaming request may be
served either by the CDN server or by a set of supplying
peers selected by the CDN server; while after the hand-
off, the CDN server will only act as the index server of
the media file. In addition, the CDN server is in a good
position to profile each peer’s contract fulfillment behav-
ior so that free-riding peers can be identified and blocked
in the system.

– On the client side, each client registered for the media
file has a multi-phase life-cycle: (1) Before receiving the
streaming service, the client is a requesting peer. (2) Af-
ter receiving the streaming service, it becomes a sup-
plying peer with a limited contribution commitment. (3)
After its contribution commitment has been fulfilled, it
becomes a retired peer. We note that many current P2P
systems do not define the third phase, which may lead to
overloaded peers and unfairness among peers.

Different from CDN-based streaming, a P2P streaming
session involves multiple supplying peers (as shown in Fig-
ure 1), each of them streaming a subset of the media data
to the requesting peer. To ensure full media quality, the sum
of their out-bound streaming rate contribution (possibly in
different amounts) is at least the same as the media play-
back rate. In our earlier work [29], we present an algorithm
to assign a subset of the media data to each supplying peer,
based on its out-bound streaming rate. Furthermore, our P2P
streaming prototypes [12,13] have demonstrated the feasi-
bility of delivering full quality video by multiple supplying
peers.

2.2 System Operations

k 0

co−existence
CDN−P2P

Time
(handoff time)

P2P only

Stage I Stage II

Media file release

Initial
stage

CDN
only

Fig. 2 Different stages of a media data distribution process

When the media file is first released, it is pushed to the
CDN server. At the beginning, there are no supplying peers.
The CDN server streams the media data to requesting clients
(the initial stage in Figure 2). After a streaming session, the
CDN server registers the client that has just received the
streaming service as a supplying peer with a limited contri-
bution commitment which includes: (1) a limited out-bound
streaming rate for this media file and (2) a limited number of
streaming sessions or a limited period of service time it will
fulfill during its tenure as a supplying peer. To reflect fair-
ness, the higher the amount in (1), the smaller the amount in
(2) - a quantitative definition will be given in Sections 3 and
4.

With the creation of supplying peers, the CDN server
can divide the streaming load between itself and the supply-
ing peers. This is the stage when the CDN and P2P based
streaming co-exist; and the P2P streaming capacity grows
(stage I in Figure 2). When a streaming request arrives for
a given media file, the CDN server first checks if there is a
set of active supplying peers for this media file such that:
(1) They are not currently serving another streaming ses-
sion and (2) The sum of their out-bound streaming rate is no
less than the media playback rate. If so, the request will be
served by the set of supplying peers selected; otherwise, the
request will be served by the CDN server itself. If both CDN
and P2P do not have enough streaming capacity, the request
will be rejected. In the presence of multiple requests, if the
current streaming capacity is not sufficient to accommodate
all requests, the CDN server will perform admission control
by accepting a subset of the requests. Different admission
policies may be applied. For example, the system may ac-
cept requests based on the amount of out-bound bandwidth,
number of sessions, or amount of service time promised by
requesters. On the other hand, if the current P2P streaming
capacity exceeds the capacity requested, the system will per-
form supplying peer selection by choosing a subset of the
available supplying peers to serve the requests. Different se-
lection policies also exist, for example, based on the fulfill-
ment status of contribution commitment. Both the senders
(i.e. supplying peers) and receivers (i.e. requesting peers)
confirm the transaction with the CDN server at the begin-
ning and at the end of the media streaming session; and they
report problems to the server whenever a sender is no longer

4 Dongyan Xu et al.

able to contribute during the streaming session (e.g., when
the user exits the system or when the sender experiences net-
work condition degradation). If the latter situation happens,
the server will designate other peers as replacement senders.
Our earlier P2P streaming prototypes [12,13] are capable
of such dynamic sender switch without incurring streaming
quality degradation.

Finally, when the P2P streaming capacity for the me-
dia file becomes sufficiently large, CDN-based streaming
will no longer be provided, so that the CDN server capac-
ity reserved for this media file can be released. The hand-
off time k0 is determined such that the P2P streaming ca-
pacity alone is sufficient to handle all subsequent streaming
requests, with a zero expected rejection rate. After the hand-
off, the CDN server only acts as a directory server of this
file, and the streaming will be performed by the supplying
peers (stage II in Figure 2). In the case where the peer con-
tribution is in the form of service time (rather than number
of sessions), there may be a stage III (not shown in Figure
2) during which the CDN server will re-join the media dis-
tribution process, using a marginal capacity, to pick up the
few “tail” streaming requests that cannot be accommodated
by the P2P streaming capacity.

As to be shown in Section 3, a non-trivial analysis is
needed to determine the handoff time k0. If the handoff takes
place too early, the P2P streaming capacity may not have
grown to the sufficient level. On the other hand, if the hand-
off happens too late, the CDN server capacity reserved for
the media file will be held longer thus incurring higher cost.
Furthermore, our analysis of k0 will create a foundation for
the modeling of a more complex media distribution scenario:
The content provider releases new media files on a contin-
uous basis. Operations of the hybrid architecture will then
be decomposed into cycles with each cycle starting at the re-
lease of a new media file. Due to the limited CDN server and
P2P streaming capacity, the release of new media files needs
to be controlled, so that the system can absorb the peak de-
mand for one media file before the release of a new one. The
analysis of k0 will help determining the inter-release dura-
tion for more efficient utilization of CDN and P2P capacity.
In this paper, we will focus on an in-depth study of a single
cycle, namely the distribution process of one media file.

3 Session-based Contribution Policy

In this section, we present an analysis of the CDN-P2P hy-
brid architecture, under the session-based limited contribu-
tion policy. Especially, the analysis will determine the hand-
off time k0. The derivation of k0 is complicated by the lim-
ited contribution policy, which creates a dynamic population
of supplying peers. The analysis will capture the system dy-
namics, including the growth of P2P streaming capacity, the
progress of the distribution process, and the fulfillment of
peer contribution contracts.

To make the analysis tractable, we make the following
assumptions:

– We assume honesty and “always-on” network connec-
tions for all peers: each peer will fulfill its limited contri-
bution contract in terms of both its committed streaming
rate and number of streaming sessions to serve. We also
assume that each supplying peer has sufficient disk space
to store the media file being distributed.

– We adopt a “flat rate” style peer contribution contract,
with peers committing to the same number of sessions
regardless of time. This is for the tractability of the anal-
ysis, as well as for the simplicity of the contribution pol-
icy.

– For each streaming session, the intermediate network does
not create additional bottleneck between the CDN server
and the requesting peer, or between the supplying peers
and the requesting peer, i.e., the bottleneck always lies
in the out-bound link of the CDN server or of the sup-
plying peers. This assumption can be roughly justified
by the fact that all clients (peers) are within the same
domain served by the CDN server.

– We assume that the peer population for each media data
is finite and known, which can be justified by the regis-
tration/subscription requirement in many content distri-
bution scenarios. The streaming requests are generated
independently by each requesting peer with a given Pois-
son rate of λ requests per time unit and per client. This,
in effect, produces a finite population model with a time-
varying overall streaming request rate for the media file.

Our analysis is based on the above assumptions, some of
which do not reflect reality. Instead, the analysis will serve
as the basis of an extendible framework for the analysis of
more dynamic and complex systems, such as systems with
dynamic peer failure/departure [12], flash crowd effect [19,
26], or time-varying peer contribution contract. Especially,
in Section 3.6, we will extend our basic analysis to account
for the system’s streaming capacity losses due to peers’ in-
complete contract fulfillment or on-line/off-line status change.

3.1 System Parameters and Metrics

The system parameters and the performance metrics are sum-
marized in Table 1. Note that they are defined with respect
to the distribution of a specific media file.

Upon the release of the media file, the CDN server re-
serves a streaming capacity that is equal to Nc concurrent
full-quality streaming sessions. In the service area of the
CDN server, the total number of clients registered for the
media file is M0. When a peer requests the media file, it will
commit a limited contribution contract with the CDN server
in terms of number of streaming sessions it will serve after
getting the media file. Our architecture provides n options
of limited contribution for the peers: Each option includes
(1) an out-bound streaming rate committed to each session,
which is equal to 1

ci
(1 ≤ i ≤ n) of the media playback

Analysis of a CDN-P2P Hybrid Architecture for Cost-Effective Streaming Media Distribution 5

Notation Definition

L Length of one streaming session in minutes.
k Discrete time index, each unit has a length of L.
Nc CDN server capacity allocated to the media file (in number of simultaneous streaming sessions).
M0 Total number of clients registered for the media file.
n Number of peer classes.
pi Percentage of peers belonging to the ith class.
λ Per-client request generation rate, in requests per minute.
ci The out-bound streaming rate contributed by a class i peer is 1

ci
of the media playback rate.

xi Number of sessions a class i peer is committed to serve.
k0 The “CDN-to-P2P” handoff time.

M(k) Number of remaining requesting peers at time k. M(0) = M0

S(k) Total committed P2P streaming capacity at time k, in number of full streaming sessions.
N(k) Instantaneous P2P streaming capacity at time k, in number of full streaming sessions.

Table 1 Definitions of system parameters and performance metrics

rate3 and (2) a total of xi sessions it will participate in to
serve other peers. Correspondingly, the client population is
divided into n classes: a class-i peer chooses option i. The
percentage of class-i peers among all registered peers is de-
noted by pi. In a P2P streaming session, the requesting peer
will be served by a set of supplying peers whose sum of out-
bound streaming rate is equal to or greater than the media
playback rate. If a streaming request is rejected due to insuf-
ficient streaming capacity, the requesting peer will continue
to generate requests for this media file with a per-client re-
quest generation rate λ.

The analysis is based on a discrete time scale in mul-
tiples of L, the duration of one streaming session, and is
denoted by k. Even though this is a relatively coarse gran-
ularity of time, the analysis closely matches our simulation
results based on a much finer time granularity as shown later
in this section.

One of the main goals of our analysis is to compute the
“CDN-to-P2P” handoff time k0. More precisely, k0 is de-
fined as the time when the P2P streaming capacity alone is
able to fulfill (expectedly) all subsequent streaming requests,
so that the CDN server capacity Nc can be released. Start-
ing from k0, the request rejection rate should remain close
to zero. To derive k0, we need to derive the following quan-
tities: (1) N(k) - the total instantaneous P2P streaming ca-
pacity at time k, and (2) M(k) - the number of remaining
requesting peers at time k.

Unfortunately, the accurate form of N(k) turns out to be
extremely difficult - if at all possible, to derive. This is be-
cause N(k) is not a deterministic quantity and is dependent
on the random file request process and the progress of the
contribution fulfillment of each individual supplying peer.
To illustrate the difficulty in deriving N(k), consider the ex-
ample in Figure 3. Suppose that at time k, there are four
class-1 supplying peers: Peer 1 to Peer 4. Let c1 = 2 and

3 For example, we let ci = 2i in [29] and design an optimal me-
dia data assignment algorithm for supplying peers serving a streaming
session. However, this does not need to be assumed in our analysis.

x1 = 3. Suppose at k, the four supplying peers still need
to serve 1, 1, 2, and 2 sessions, respectively. Since c1 = 2,
N(k) = 4/2 = 2 (in number of full sessions). If a request
by Peer 5 arrives at k, the value of N(k + 1) will be differ-
ent, depending on which supplying peers among Peers 1, 2,
3 and 4 are chosen to serve Peer 5. For example, if Peer 1
and Peer 2 are chosen, N(k + 1) will be 3/2 = 1.5 (Figure
3(b)). However, if Peer 3 and Peer 4 are chosen, N(k + 1)
will be 5/2 = 2.5 (Figure 3(c)). Different selections of sup-
plying peers lead to different progress of their contribution
contract fulfillment, making the value of N(k + 1) difficult
to keep track of.

To get around the difficulty in deriving N(k), we instead
derive a lower bound of N(k). First, we define S(k) as the
total committed (namely “instantaneous” + “future”) P2P
streaming capacity, in full sessions, at time k. S(k) is much
easier to model: Consider the example in Figure 3, S(k) is
(1 + 1 + 2 + 2)/2 = 3. At k + 1, no matter which sup-
plying peers are selected to serve Peer 5, S(k + 1) will be
S(k) − 1 + 3/2 = 3.5, as verified by Figures 3(b) and 3(c).
Second, we observe that S(k)/x1 is a lower bound of N(k).
The former is in fact the instantaneous streaming capacity of
the following virtual system: In this system, at most one vir-
tual supplying peer has fewer than x1 = 3 sessions to serve.
The virtual system at k and k + 1 is shown in Figures 3(a’)
and 3(b’), respectively. It is easy to see that the virtual sys-
tem has the minimum number of supplying peers (and there-
fore the lowest N(k)) among systems with the same S(k).
In Section 3.3, by assuming that the fraction pi of different
peer classes remains the same and then taking the weighted
average of xi, we will derive a lower bound of N(k) under
multiple peer classes (i.e., with multiple xi’s).

The rest of this section is organized as follows: In Sec-
tion 3.2, we derive the expected quantities of interest (such
as S(k), N(k)) in two stages: In stage I when k ≤ k0, the
hybrid architecture provides both CDN-based streaming and
P2P streaming, as the P2P streaming capacity alone is in-
sufficient to serve the incoming requests. In stage II when

6 Dongyan Xu et al.

Peer 2

11

Peer 1

1

Peer 3

1

1

1

1

1

1

1

1

Peer 3

1

1

Peer 4

Peer 3

Peer 5

1 1 1

1

1 1 1

Peer 4

1 1

1

1 1 1

1

Virtual peer

Virtual peer Virtual peer

Virtual peer Virtual peer

1 1

Peer 1 Peer 2

1

Peer 4
1

1

1

Peer 5

(a) At k (a’) Virtual system at k

(b) At k+1 − if Peer 1 and Peer 2 serve Peer 5

(b’) Virtual system at k+1

(c) At k+1 − if Peer 3 and Peer 4 serve Peer 5

Fig. 3 Example illustrating the difficulty in tracking N(k)

k > k0, the architecture only provides P2P streaming as the
P2P streaming capacity is sufficient to serve the incoming
requests alone. We determine k0 in Section 3.3. We discuss
the dimensioning among key parameters Nc, xi and k0 in
Section 3.4. Finally, Section 3.5.1 presents the simulation
results.

3.2 Derivation of S(k) and M(k)

S(k) is the total committed P2P streaming capacity in num-
ber of full sessions (i.e. number of streaming requests that
can be accommodated). S(k) is defined by the following
two-piece recursive equation:

S(k + 1) =







(k ≤ k0) S(k) + Nc

n∑

j=1

pj

(
xj

cj

)

︸ ︷︷ ︸

Term1

+

S(k)
n∑

j=1

pj

(
xj

cj

)

︸ ︷︷ ︸

Term2

n∑

j=1

pj

cj

︸ ︷︷ ︸

Term3





n∑

j=1

pj

(
xj

cj

− 1

)




︸ ︷︷ ︸

Term4

(k > k0) S(k) + λLM(k)





n∑

j=1

pj

(
xj

cj

− 1

)




(1)

In stage I when k ≤ k0, the overall request generation
rate is higher than the combined CDN-P2P streaming capac-
ity. Hence during this stage, both the supplying peers and the
CDN server are expected to be busy serving new streaming

requests. The terms in the above equation are explained as
follows:

– Term 1 is the total committed contribution from peers
served by the CDN server during the interval [k, k + 1].
(xj/cj) is the number of sessions (normalized to full ses-
sion) contributed by a class-j peer. Nc is the reserved
CDN server capacity; therefore it is also the number of
peers served by the CDN server during [k, k + 1].

– Term 2 is the expected number of supplying peers at time
k. Recall that S(k) is in number of full sessions. To es-
timate the number of the supplying peers, we need to
divide S(k) by the average number of full sessions con-
tributed by each supplying peer.

– Term 3 is the average fraction of a full streaming ses-
sion that each supplying peer contributes. Therefore, the
product of Term 2 and Term 3 is the expected number
of P2P streaming sessions that can be accommodated at
time k.

– Term 4 is the expected number of committed full ses-
sions brought by each P2P streaming session during [k, k+
1]. Note that the “−1” in Term 4 accounts for the fulfill-
ment (and thus the loss) of one full session. Therefore,
the product of Terms 2, 3 and 4 is the total commit-
ted contribution (in number of full sessions) from peers
served by P2P streaming during interval [k, k + 1].

We now explain the equation for stage II when k > k0:
By definition of k0, all streaming requests are expected to be
accommodated by the P2P streaming capacity. Hence during
this stage, no streaming request is supposed to be rejected
due to insufficient capacity. Hence the growth of S(k) in
this stage is computed as the number of streaming requests
λLM(k) multiplied by Term 4 in Equation (1).

Analysis of a CDN-P2P Hybrid Architecture for Cost-Effective Streaming Media Distribution 7

Based on S(k), we derive M(k), the number of remain-
ing requesting peers at time k, as follows.

M(k + 1) =







M(k) −

S(k)

n∑

j=1

(
pj

cj

)

n∑

i=1

pi

(
xi

ci

) − NC (k ≤ k0)

M(k) · (1 − λL) (k > k0)

(2)

To simplify our presentation, we introduce two variables:
r and ρ, as defined in the following equation.

r =

n∑

j=1

pj

(
xj

cj

)

ρ =

n∑

j=1

(
pj

cj

)

(3)

Note that r can be thought of as the normalized average
“contribution ratio” of all supplying peers: the higher the r,
the more contribution the peers will make, and vice versa.
Similarly, ρ can be thought of as the average fraction of the
full streaming rate that each supplying peer contributes dur-
ing a P2P streaming session.

First, if r 6= 1, the close-form expressions for S(k + 1)
and M(k+1) in terms of r and ρ can be obtained as follows:

S(k) =







Nc

ρ

(
r2

r − 1

) [(

1 + ρ

(
r − 1

r

))k

− 1

]

(k ≤ k0)

S(k0) + M(k0) (r − 1)
[
1 − (1 − λL)

k−k0
]

(k > k0)

(4)

And

M(k) =







M0 +
kNc − S(k)

r − 1
(k ≤ k0)

M(k0) (1 − λL)k−k0 (k > k0)

(5)

For r = 1, the close-form expressions for S(k + 1) and
M(k + 1) can be given as follows:

S(k) =

{
kNc (k ≤ k0)
S(k0) (k > k0) (6)

And

M(k) =







M0 − kNc − ρNc
k(k+1)

2 (k ≤ k0)

M(k0) (1 − λL)k−k0 (k > k0)

(7)

3.3 Derivation of Handoff Time k0

By definition, starting at time k0, the P2P streaming capac-
ity alone should be able to handle all subsequent streaming
requests without the CDN server. Thus the reserved CDN
server capacity can be released. k0 can be derived by equat-
ing the number of requests in the interval [k0, k0 + 1] to the

instantaneous P2P streaming capacity N(k) at k0 multiplied
by a conservative factor α.

λLM(k0) = αN(k0) (8)

As shown in Section 3.1, N(k) is difficult to derive. In-
stead, we can derive a lower bound of N(k) based on S(k) in
Section 3.2. With the presence of multiple peer classes, the
lower bound of N(k) can be expressed as ρS(k)

r
: It is easy to

verify that ρS(k)
r

is the expected instantaneous P2P capacity
of the “virtual system” with total committed capacity S(k)
and with at most one class-j (1 ≤ j ≤ n) supplying peer
having fewer than xj sessions to serve. Therefore, we will
use the following equation instead of Equation (8) to derive
an even safer k0:

λLM(k0) = α
ρS(k0)

r
(9)

By replacing M(k) using Equation (5), Equation (9) for
r 6= 1 can be re-arranged as follows:

λL

(

M0 +
k0Nc

r − 1

)

=

(

α
ρ

r
+

λL

r − 1

)

S(k0) (10)

After a number of algebraic manipulations, we have

(1 + ρ
r − 1

r
)k0 =

λL
(
M0 + k0Nc

r−1

)

(

α
(

r
r−1Nc + λL

(
r

r−1

)2 Nc

ρ

) +1 (11)

Observe that the above equation has the form: ak0 =

bk0 + d, where a = 1 + ρ r−1
r

, b = λL
αr

+ ρ(r−1)
r2 and d =

1 + λLM0
“

α(r
r−1)Nc+λL(r

r−1)
2 Nc

ρ

” . Hence k0 can be solved as

follows:

k0 =

−d · log (a) − b · W

(

−
log (a)·e(

−d log a
b)

b

)

b · log (a)
(r > 1)

(12)

Where W (·) is the Lambert’s W-function. A detailed defini-
tion of this function can be found in [9]. An equation similar
to (11) for the case of r = 1 can be obtained as:

λL
[
M0 − k0Nc

(
1 +

ρ(k0 + 1)

2

)]

= αρk0Nc (13)

This equation can be re-arranged in the form of a quadratic:
k2
0 +gk0−h = 0, where g = 2

(
α

λL
+ λ

2 + 1
ρL

)
and h = 2 M0

ρNc
.

Taking the positive root of the quadratic equation, we obtain
the expression for k0 as follows:

k0 =
−g +

√

g2 + 4h

2
(r = 1) (14)

8 Dongyan Xu et al.

3.4 Relation between k0, r, and Nc

The derivation of k0 provides a rigorous basis for the dimen-
sioning of parameters in the hybrid architecture to save CDN
server capacity cost without overloading the peers. In par-
ticular, we discuss the relation between k0, r, and Nc. Note
that Nc and xi (1 ≤ i ≤ n) are tunable system parameters in
the hybrid architecture, and the “contribution ratio” r is de-
fined as r =

∑n

j=1 pj(
xj

cj
). The other parameters affecting

k0 are the registered client population M0 and the per-client
streaming request generation rate λ.

Based on Equations (12) and (14), Figure 4 shows a nu-
merical example illustrating the relation between k0 and r,
under different CDN server capacity (Nc = 5, 20, respec-
tively) and different per-client request generation rate (λ =
0.001, 0.003, respectively). The values of other system pa-
rameters are fixed: α = 1, M0 = 2000, L = 60 min. We
first observe that with r and Nc fixed, when λ increases,
k0 also increases, indicating that the “CDN-to-P2P” hand-
off will occur later rather than earlier. We also observe that
for a fixed r, the higher the Nc, the lower the k0 (i.e., the
sooner the handoff can take place). However, it is less intu-
itive to realize that the effect of Nc will diminish as it in-
creases. On the other hand, with the same Nc, k0 decreases
when r increases. Interestingly, however, as r increases, k0

quickly levels off. This important observation justifies our
limited contribution policy for supplying peers: beyond a
certain point, any further increase in r will not yield sig-
nificant improvement in the “CDN-to-P2P” handoff time. In
other words, by imposing a relatively small r on the peers,
we already achieve a reasonably early handoff time k0.

In fact, if we let r → ∞ in Equation (12), we can derive
the earliest possible handoff time as:

lim
r→∞

k0 =

log

(

λLM0

(αNc+λL
Nc
ρ)

+ 1

)

log (1 + ρ)
(15)

In summary, there are three cases that need to be consid-
ered: If 0 < r < 1, the peers will contribute less than they
receive (in media data volume); and the system capacity will
collapse if the CDN server stops serving streaming requests.
If r = 1, the peers will contribute back the exact amount
of media data they have received. Hence the total streaming
capacity will not change after the CDN server stops serving
streaming requests. In the case of r > 1, the peers will make
extra contribution to the total streaming capacity. Hence the
capacity may grow even after k0.

For now, we assume that r ≥ 1, which can be ensured if
xj ≥ cj (1 ≤ j ≤ n). This will ensure that the committed
contribution of each peer - if measured by the total volume
of media data it sends out, is greater than or equal to the total
volume of media data it receives (i.e., volume of the media
file).

3.5 Simulations

In this section, we present extensive simulation results to
validate our analytical results as well as to demonstrate the
effectiveness of the hybrid architecture under the session-
based contribution policy.

3.5.1 Simulation Setup

We simulate a hybrid system with one CDN server and M0 =
2000 clients registered for a media file. Unless stated other-
wise, the simulation parameters are set as follows: Initially,
the CDN server reserves a capacity for serving Nc = 20
simultaneous streaming sessions for the media file to be dis-
tributed. The duration of each streaming session is L = 60
minutes. Each client makes a streaming request for this me-
dia file independently, with a per client Poisson request gen-
eration rate λ = 0.001 request/minute. The 2000 clients be-
long to n = 3 classes: for class 1, c1 = 2 and x1 = 3; for
class 2, c2 = 4 and x2 = 6; for class 3, c3 = 8 and x3 = 12.
The percentages of class 1, 2 and 3 peers are 20%, 50%, and
30%, respectively (therefore, r = 3

2 ∗ 20% + 6
4 ∗ 50% + 12

8 ∗
30% = 1.5). The factor α used in the calculation of k0 is
1.0. Finally, contrary to the coarse time granularity in our
analysis, the time unit in our simulation is one minute.

In this section, we only present representative simula-
tion results based on the above parameter values. Similar
results have also been obtained from simulations under dif-
ferent suites of parameter values.

3.5.2 Simulation Results

We measure various performance metrics such as the num-
ber of remaining requesting peers M(k) at time k, the total
committed P2P streaming capacity S(k), the instantaneous
P2P streaming capacity N(k), and the request rejection rate.
For each of these metrics, we will present the simulation re-
sults and wherever necessary we will compare them with our
analytical results.

Remaining requesting peers M(k) This performance met-
ric indicates how fast the media file is distributed to the
clients. Figure 5 shows the decrease of M(k) during the first
60 hours after the media file is released. The two curves in
this figure indicate that the simulation results closely match
the numerical results based on our analysis. The results (plus
the results based on other sets of simulation parameter val-
ues) validate our derivation of M(k) and S(k) in Section
3.2, despite the coarse time granularity used in the analysis.
They also validate some of the other assumptions made in
the analysis.

To understand the impact of the system parameters, Fig-
ure 6 presents similar curves for the following four cases:
λ = 0.001, 0.003; and Nc = 5, 20. From Figure 6, it can be
seen that the “trend” of M(k) remains the same in all cases.
If the amount of reserved CDN capacity (Nc) is higher, then
M(k) will decline more rapidly, indicating a faster jumpstart
of P2P streaming capacity. However, this will only happen

Analysis of a CDN-P2P Hybrid Architecture for Cost-Effective Streaming Media Distribution 9

1 1.5 2 2.5 3 3.5 4 4.5 5
5

10

15

20

25

30

35

40

45

50

k0

r

Nc=20,lambda=0.001
Nc=20,lambda=0.003
Nc=5,lambda=0.001
Nc=5,lambda=0.003

Fig. 4 k0 as a function of r for different Nc and different λ
(based on analysis)

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (in hours)

N
um

be
r

of
 R

em
ai

ni
ng

 R
eq

ue
st

in
g

P
ee

rs

Simulation, handoff at k=k
0

Analysis, handoff at k=k
0

Fig. 5 Number of remaining requesting peers (from simulation
and analysis, respectively)

0 20 40 60 80 100
0

400

800

1200

1600

2000

Time (in hours)

N
o.

 o
f R

em
ai

ni
ng

 R
eq

ue
st

in
g

P
ee

rs

N
c
 = 20, λ=0.001

N
c
 = 5, λ=0.001

N
c
=20, λ=0.003

N
c
=5, λ=0.003

λ=0.001, N
c
=5

λ=0.001, N
c
=20

λ=0.003, N
c
=20

λ=0.003, N
c
=5

Fig. 6 M(k) under different system parameters

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (in hours)

N
um

be
r

of
 R

em
ai

ni
ng

 R
eq

ue
st

in
g

P
ee

rs
Simulation (standard), handoff at k=k

0
Simulation, handoff at k=k

0
/2

Simulation, handoff at k=k
0
/4

Simulation, handoff at k=2k
0

Simulation, CDN−only

Fig. 7 Impact of handoff time on M(k)

up to a certain threshold - once the reserved CDN capacity
Nc exceeds the threshold, any further increase of Nc will
not change the curve of M(k) significantly. We also notice
from the figure that as the request rate λ increases, M(k) de-
clines more rapidly, reflecting the effectiveness of the CDN
in jumpstarting P2P streaming capacity, as well as the intrin-
sic adaptivity of the P2P streaming capacity to time-varying
demand.

Figure 7 shows the impact of different handoff time. k0 ≈
11 is the calculated handoff time. We set handoff times equal
to k0/4 and k0/2 representing early handoff situations; and
we set a handoff time equal to 2k0 to represent a late handoff.
As a comparison, and to demonstrate the benefit of the pro-
posed hybrid architecture, we also present the curve when
there is no P2P streaming (“CDN only”). From Figure 7,
we observe that the extreme case of “CDN only” results in
an almost linear and the slowest decrease of M(k) (i.e., the
slowest progress of media distribution). For our hybrid ar-
chitecture, a handoff time earlier than k0 is premature (k0/4
or k0/2): it leads to a slower progress of media distribution.

On the other hand, a handoff time later than k0 does not help
speeding up the media distribution progress: the curve for
“handoff at k0” and the curve for “handoff at 2k0” almost
overlap, although the latter will reserve the CDN server ca-
pacity for twice as long as the former.

Impact of contribution ratio r on media distribution progress
Figures 8 and 9 demonstrate the impact of r on the progress
of media distribution. In these two figures, the remaining
number of peers, M(k), is plotted against time for Nc = 5
and for Nc = 20, respectively. We observe that if the re-
served CDN server capacity is relatively high (Nc = 20),
there will not be much of a difference between the curves
for r = 1 and for r = ∞ (Figure 8). However, if the re-
served CDN server capacity is relatively low (Nc = 5), the
impact of contribution ratio r on M(k) will be more distinc-
tive. This can be observed in Figure 9 where there is clear
difference among the curves for r = 1, r = 1.5, and r = ∞.

Figure 8 also plots the remaining number of requesting
peers when r = 0 and Nc = 60. From the figure, we notice

10 Dongyan Xu et al.

that the 90% completion time of the media distribution pro-
cess (ı.e., when M(k) = 200) for this case is 40 hours, which
is the same as in the case of r = 1.5 and Nc = 20. This fur-
ther demonstrates the cost-effectiveness of our hybrid archi-
tecture. With a limited contribution ratio of r = 1.5, we only
need to reserve a CDN capacity of Nc = 20 for a period of
11 hours (k0 ≈ 11), contrary to Nc = 60 for at least a period
of 40 hours without P2P streaming, in order to achieve the
same progress of media distribution.

Figure 10 reveals the impact of λ and Nc on the 90%
distribution completion time, which is an indication of how
fast the media file is distributed among the peers. Among
the four cases considered, the earliest 90% completion time
is obtained in the case of Nc = 20 and λ = 0.003. It is
important to note that extra-large values of r do not pro-
vide much reduction in the 90% completion time. Most of
the reduction happens when the value of r increases from
0 (i.e., CDN only with no P2P streaming) to 2.0. This indi-
cates that a limited contribution from the peers is necessary
and sufficient for the media distribution process, contrary to
the intuition that the supplying peers need to serve as long
as possible.
Streaming request rejection rate To illustrate the system
dynamics in more detail, we record the per-hour streaming
request rejection rate in Figure 11, under different handoff
times. As a comparison, we also show the rejection rate in
the case without P2P streaming (“CDN only”). The “CDN
only” system results in the slowest decrease in the request
rejection rate, due to the fixed and limited CDN streaming
capacity. For our hybrid architecture, if the handoff time is
too early (at k0/2), the rejection rate will remain high many
hours after the handoff. With a late handoff (at 2k0), the re-
jection rate is almost the same as in the case of handoff at
k0. Once again, this demonstrates the importance of deter-
mining k0 for both media distribution progress and for CDN
server capacity saving.
Total committed P2P streaming capacity S(k) S(k) rep-
resents the total “reserve” of P2P streaming capacity in the
system. Note again that it is not the instantaneous stream-
ing capacity. The instantaneous streaming capacity, N(k),
represents the truly usable streaming capacity (number of
full rate media streaming sessions) at time k. In our analy-
sis, we do not derive an accurate form for N(k). Instead, we
have derived its lower bound as ρS(k)

r
. Figure 12 shows the

growth of S(k) based on both simulation and analysis re-
sults. Once again, we find that the results from analysis and
simulation match closely. Similar match is also observed for
N(k).

Figure 12 leads to one important observation: With the
elapse of time, more and more peers are served and S(k),
the total committed P2P streaming capacity, will keep on
growing (if r > 1). However, such a large P2P streaming ca-
pacity will not be consumed, due to the rapid decrease of the
remaining requesting peers in the meantime. This proves to
be a waste of streaming capacity; and it makes the peer con-
tribution commitment unfulfilled. Indeed, there is no need
for those peers to stay committed since there will not be as

many requests in the future. The session-based contribution
policy is the reason for such undesirable feature, which mo-
tivates us to design alternative contribution policies that can
bound the duration in which a peer is required to remain
committed to the media file. These alternative policies will
be presented in Sections 4 and 5.

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

Time (in hours)

S
(k

)

r=2
r=2 analysis
r=1.5
r=1.5 analysis
r=1
r=1 analysis

r=2

r=1.5

r=1

Fig. 12 S(k) under different r (from simulation and analysis)

In summary, the simulation results confirm the valid-
ity of our analysis. In particular, the hybrid architecture un-
der the limited contribution policy proves to be highly cost-
effective: It achieves faster media distribution progress and
lower request rejection rate, compared with a “CDN only”
architecture. Moreover, it lowers the media distribution cost
by only requiring to reserve a reasonable amount of CDN
server capacity, for a limited period of time. Finally, an unde-
sirable feature due to the session-based contribution policy
is that the P2P streaming capacity tends to build up toward
the end of the media distribution process and never get used.
In Section 4, we will present a time-based contribution pol-
icy that eliminates the unnecessary P2P streaming capacity
accumulation.

3.6 Modeling Streaming Capacity Losses

Till now we have analyzed the dynamics of an idealistic hy-
brid CDN-P2P system under the assumptions stated at the
beginning of Section 3. In particular, we assume peers’ full
“honesty” in contributing back to the system. We also as-
sume that the peers are always on-line and peers’ network
connections are always in good condition. However, if one
or more of the above assumptions do not hold, the system
will suffer from a loss of streaming capacity. To take into
account system capacity losses in our analysis, we in this
section introduce another parameter l (0 ≤ l ≤ 1) termed as
the loss factor and in companion η (= 1− l) as the effective
capacity factor. More specifically, if a peer commits a total
of x sessions, we expect that only ηx sessions will actually
be fulfilled by the peer.

Analysis of a CDN-P2P Hybrid Architecture for Cost-Effective Streaming Media Distribution 11

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (in hours)

N
o.

 o
f R

em
ai

ni
ng

 R
eq

ue
st

in
g

P
ee

rs

r=0
r=0.5
r=1
r=1.5
r=∞
Nc=60, r=0

r=0

r=0.5

r=1

N
c
=60

 r=0

r=∞

Fig. 8 Impact of r on M(k) (Nc = 20)

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (in hours)

N
o.

 o
f R

em
ai

ni
ng

 R
eq

ue
st

in
g

P
ee

rs

r=0
r=0.5
r=1
r=1.5
r=∞

r=0

r=0.5

r=1

r=1.5

r=∞

Fig. 9 Impact of r on M(k) (Nc = 5)

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

400

r

90
%

 c
om

pl
et

tio
n

tim
e

λ=0.001,N
c
=5

λ=0.003,N
c
=5

λ=0.001,N
c
=20

λ=0.003,N
c
=20

λ=0.001, N
c
=5

λ=0.003, N
c
=5

λ=0.001, N
c
=20

λ=0.003, N
c
=20

Fig. 10 90% completion time (hours) vs. r

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Time (in hours)

R
eq

ue
st

 R
ej

ec
tio

n
R

at
e

(%
)

Hybrid, handoff at k=k
0

Hybrid, handoff at k=k
0
/2

Hybrid, handoff at k=k
0
/4

Hybrid, handoff at k=2k
0

CDN−only, handoff at k=k
0

Fig. 11 Per hour request rejection rate over time

l (or η) integrates various factors leading to streaming
capacity losses, including peer dishonesty in contract ful-
fillment, sender status change (from “on-line” to “off-line”)
during a session, and sender network condition degradation.
We note that the CDN server will detect and block free-
riders that do not make any contribution to the system. How-
ever, the system has a certain level of tolerance for dishonest
peers that only contribute a portion (η) of their commitment.
We also note that a sender may not always serve the entire
streaming session because of its status change or network
degradation4. In addition, l might be class-specific as well:
If li represents the loss factor for peers in class i, then we can
calculate the overall loss factor l for the system as a weighted
average: l =

P

i
lixipi

P

i
pixi

. Revising the analysis in Section 3.2,
we can write:

4 Dynamic sender replacement for sustained streaming quality has
been implemented in our P2P streaming system prototypes GnuStream
[13] and PROMISE [12].

S(k + 1) =







(k ≤ k0) S(k) + Nc

n∑

j=1

pj

(
ηxj

cj

)

︸ ︷︷ ︸

Term1

+

S(k)
n∑

j=1

pj

(
xj

cj

)

︸ ︷︷ ︸

Term2





n∑

j=1

pj

cj





︸ ︷︷ ︸

Term3





n∑

j=1

pj

(
ηxj

cj

− 1

)




︸ ︷︷ ︸

Term4

(k > k0) S(k) + λLM(k)





n∑

j=1

pj

(
ηxj

cj

− 1

)




(16)

Even though the recursive definition of S(k) has changed,
the recursive definition of M(k) given in equation 2 remains
the same. For completeness, we rewrite the recursive defini-

12 Dongyan Xu et al.

tions for S(k) and M(k).

S(k +1) =

{

S(k) + ηrNc + (ηr−1)ρS(k)
r

(k ≤ k0)
S(k) + λLM(k)(ηr − 1) (k > k0)

(17)

M(k + 1) =







M(k) −
S(k)

r
ρ − NC (k ≤ k0)

M(k) · (1 − λL) (k > k0)

(18)

These equations can be solved to yield the following
close-form solutions:

S(k) =







Nc

ηρ

(
η2r2

ηr − 1

) [(

1 + ηρ

(
ηr − 1

ηr

))k

− 1

]

(k ≤ k0, ηr > 1)

S(k0) + M(k0) (ηr − 1)
[
1 − (1 − λL)

k−k0
]

(k > k0, ηr > 1)

(19)

M(k) =







M0 +
kNc − S(k)

ηr − 1
(k ≤ k0, ηr > 1)

M(k0) (1 − λL)
k−k0 (k > k0, ηr > 1)

(20)

From these close-form expressions we can derive the
k0 for the CDN-P2P hybrid system with streaming capac-
ity losses:

k0 =

−d · log (a) − b · W

(

−
log (a)·e(

−d log a
b)

b

)

b · log (a)
(ηr > 1)

(21)

Where a = 1 + ηρ ηr−1
ηr

, b = λL
ηαr

+ ρ(ηr−1)
ηr2 , and d =

1 + λLM0
“

α(ηr
ηr−1)Nc+λL(ηr

ηr−1)
2 Nc

ηρ

” .

Figure 13 shows the impact of the loss factor l (or the
effective capacity factor η = 1 − l) on the handoff time k0;
while Figure 14 shows the effect of η on the system capacity
S(k) and the number of remaining requesting peers M(k).
In Figure 13, when r = 2, the handoff time k0 will have
to be extended from 9.5 hours to 12.5 hours if the effective
capacity factor η drops from 1.0 to 0.8. If η drops to 0.6, k0

will be further postponed to 17.5 hours. The decline of S(k)
growth rate shown in Figure 14 confirms the negative impact
of η. The effect on M(k) (remaining requesting peers) is
also noticeable but less significant than that on S(k). The
results from this loss-aware analysis will help determining
the degree of peer contract unfulfillment that the system can
tolerate.

4 Time-Based Contribution Policy

In this section, we propose an alternative form of limited
contribution policy for supplying peers. In Section 3, we
have used the number of streaming sessions as the form of

contribution contract and it is realized that a supplying peer
may be held up for an excessively long period of time in or-
der to fulfill its commitment (and may never be able to fulfill
it). A convenient and natural form of commitment is simply
the duration of service (as a supplying peer) imposed on each
peer. The committed service time is denoted by t - in number
of periods each equal to the duration of one media streaming
session. During its service time, a supplying peer is required
to serve streaming requests at its committed streaming rate
(with the same definition of ci as in the session-based pol-
icy) whenever selected. We denote its contribution ratio as
r̂i = ti/ci. The intuition behind the time-based contribution
policy is that a peer may serve a maximum of ti sessions
during its committed time period, and that ci such sessions
amount to the same volume as that of the media file being
distributed. Once the service time is over, the supplying peer
retires no matter how many sessions it has actually served.

Such policy is easier to be accepted by peers due to the
time bounded contract. However, the fallout of this policy
is that the accumulated P2P streaming capacity starts to de-
crease toward the end of the “P2P only” stage (i.e., stage
II) due to retiring peers. Hence under this policy, the CDN
server may need to re-join the distribution process after the
P2P-only stage. We denote the time when the CDN server
restarts serving incoming requests as k1. At this time, stream-
ing requests will be served by both CDN and P2P again.
Although the CDN server capacity requirement after k1 is
expected to be marginal compared with Nc at the beginning,
we need to dimension the system parameters so that k1 is not
too early.

4.1 Derivation of k1

We analyze the time-based contribution policy to derive an
estimate of k1, the time when the CDN server has to re-join
the media distribution process. We make the following as-
sumption to make our analysis tractable: all peers belong to
the same class with the same committed out-bound stream-
ing rate that is equal to 1

c
of the media playback rate. Each

supplying peer has a service time of t, as defined earlier in
this section.

We first note that the handoff time k0 for this new model
can be obtained using the same formula as in the session-
based model by taking x = t (note that t is normalized -
hence a peer will serve at most t sessions). During stage I
of the system, as discussed in Section 3, most of the supply-
ing peers are always busy due to the high overall streaming
request rate. Hence we expect that most of the supplying
peers in stage I will serve close to t sessions. Therefore, it is
also appropriate to use Equation (12) to determine k0 under
the time-based contribution policy. Once k0 is calculated, we
are interested in calculating the time k1, when the transition
from stage II (P2P only) to a new stage III (CDN and P2P,
not shown in Figure 2) takes place.

We define two new quantities: Let n(k) be the number of
active supplying peers at time k and let P (k) be the number

Analysis of a CDN-P2P Hybrid Architecture for Cost-Effective Streaming Media Distribution 13

1 2 3 4 5 6 7 8
5

10

15

20

25

r

k0

η=1.0
η=0.9
η=0.8
η=0.7
η=0.6
η=0.5

Fig. 13 k0 as a function of r under different η (Nc = 20 and
λ = 0.001, other parameters the same as in Section 3.5)

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time (in hours)

N
um

be
r

of
 R

em
ai

ni
ng

 R
eq

ue
st

in
g

P
ee

rs
 a

nd
 S

ya
te

m
 C

ap
ac

ity

M(k) for η=1.0
S(k) for η=1.0
M(k) for η=0.8
S(k) for η=0.8
M(k) for η=0.6
S(k) for η=0.6

Fig. 14 Number of remaining requesting peers M(k) and sys-
tem capacity S(k) (r = 2)

of peers that are served starting at time k. At time k, the sup-
plying peers which were served at time k− t will retire from
the system. An additional P (k) = λM(k − 1) peers will re-
ceive the media file and will become supplying peers at time
k + 1. Hence we can write the expected system dynamics
after time k0 as follows: For k > k0

n(k) = n(k − 1) + λM(k − 1) − P (k − t) (22)

P (k) = λM(k − 1)

Note that the above equations assume that at time k, the
streaming capacity N(k) is sufficient to satisfy all the in-
coming media streaming requests. Now for simplicity of the
analysis, we also assume that all the peers that are active at
time k0 expire at time k0 + t. We can calculate the value
of M(k0) (denoted as M) from the analysis in the previous
section. Hence the above equations can be re-written as fol-
lows:

n(k0 + t) = MλL(1 + (1 − λL) + · · · + (1 − λL)t−1)

M(k0 + t) = M(1 − λL)t (23)

Similarly, the equations for subsequent time instances
k > k0 + t can be written as follows:

n(k) = MλL(1 − λL)k−t−k0(1 + · · · + (1 − λL)t−1)

M(k) = M(1 − λL)k−k0 (24)

Similar to the definition of k0 in Equation (8) , one ob-
vious approach is to define k1 as the earliest time after k0,
such that n(k)

c
= βλLM(k) where β is some constant. Un-

fortunately, this approach does not result in an expression
for k1, because while solving n(k)

c
= βλLM(k), the factor

involving k on both sides gets cancelled! In fact, let β = 1,
we can show through simple algebraic manipulation that, if
t satisfies:

t >
log(1 + λLc)

− log(1 − λL)
(25)

then we have n(k)
c

> λLM(k) for any k > k0 + t, indi-
cating that the P2P streaming capacity will always be greater
than the overall request arrival rate.

Based on the above analysis, it seems that the CDN server
will not have to re-join the media distribution process, as
long as t is properly set. However, the analysis, which is
based on the expected case, does not reveal the hidden fact
that the overall stream request rate λLM(k) can be danger-
ously close to the P2P streaming capacity n(k)

c
, as confirmed

by our simulations. For this reason, we revise the definition
of k1 as the time when the P2P streaming capacity is equal to
λLM(k) plus the standard deviation of the incoming stream-
ing requests. Thus, we have the following revised equation:

n(k)

c
= λLM(k) +

√

λLM(k) (26)

Plugging in Equation (24), we have:

MλL

c
(1 − λL)k1−t−k0(1 + · · · + (1 − λL)t−1) =

MλL(1 − λL)k1−k0 +
√

MλL(1 − λL)k1−k0 (27)

Solving Equation (27), we have:

k1 = k0 + 2t (28)

+
2 log c + log λL − log M − 2 log[1 − (1 + cλL)(1 − λL)t]

log(1 − λL)

In the more general case when the peers belong to mul-
tiple classes, a weighted average of their service time com-
mitment (

∑

i piti) can replace t and the above equation can
be solved for k1.

4.2 Relation between k1, r̂, and Nc

To illustrate the relation between key system parameters,
Figure 15 shows the numerical value of k1 versus different

14 Dongyan Xu et al.

service time commitment (i.e., r̂ = t/c), based on Equation
(28). In this example, all peers belong to the same class with
c = 2. From the figure, we notice that the per client request
rate λ has a larger impact on the value of k1 than the reserved
CDN server capacity Nc. This can be explained as follows:
With a higher λ, most peers request and receive the media
file earlier. Hence these peers leave the system earlier. This
implies that the time at which the P2P streaming capacity be-
comes insufficient comes earlier too. On the other hand, the
reserved CDN server capacity Nc does not have much in-
fluence on the value of k1 because after k0, the CDN server
will not serve any requests for a sustained period of time
(i.e., k1 − k0). The difference in k1 under different values
of Nc is indirectly due to the difference in the respective k0

values. We have also plotted k1 for different values of the ini-
tial registered client population M0. As the client population
increases, there is an increased chance that the system will
have enough supplying peers even after a long time. Hence
k1 increases with the number of registered clients. Finally,
the longer the service time commitment t, the later the time
k1.

1.5 2 2.5 3 3.5 4 4.5 5
40

50

60

70

80

90

100

110

120

130

140

150

k1

r

Nc=20,λ=0.001,M(0)=2000
Nc=20,λ=0.003,M(0)=2000
Nc=5,λ=0.001,M(0)=2000
Nc=5,λ=0.003,M(0)=2000
Nc=20,λ=0.001,M(0)=1000
Nc=5,λ=0.001,M(0)=4000

 ^

Fig. 15 k1 versus service time commitment r̂ = t

c
(based on analysis)

4.3 Simulation Results

We perform simulations to evaluate the time-based contri-
bution policy. The simulation parameters are the same as in
the simulations for the session-based policy (Section 3.5),
except that the peers belong to the same class with c = 2 and
t = 3 (thus r̂ = t

c
= 1.5).

Figure 16 shows the cumulative number of streaming re-
quest rejections over time, with and without the CDN server
re-joining at k1 ≈ 70. We observe that after the “CDN-to-
P2P” handoff (at k0 ≈ 10), there is a 60-hour period when
there is no streaming request rejection. However, sometime
around k = 70, if the CDN server does not re-join, the num-
ber of rejections will start to increase again. This indicates

that the P2P streaming capacity cannot always accommodate
the incoming requests beyond k1, confirming our analysis.
On the other hand, if the CDN server re-joins at k = 70,
the number of rejections will stop increasing. We also ob-
serve that the CDN server capacity required after the re-join
is N ′

c = 1, which is significantly lower than the original re-
serve of Nc = 20.

Figure 17 plots the P2P streaming capacity (N(k) =
n(k)

c
) versus the remaining number of requesting peers (M(k)),

without the CDN server’s re-join. It confirms the fact that un-
der the time-based policy, the P2P streaming capacity may
become too close to the streaming request rate thus missing
some requests, even though the expectation of the former is
mathematically higher than that of the latter. In our simula-
tion, the P2P streaming capacity virtually becomes zero at
k ≈ 90, and there is no way to accommodate the remaining
requesting peers by P2P streaming only.

In summary, the time-based peer contribution policy bounds
the service time of each supplying peer. However, it leads to
more limited P2P streaming capacity toward the end of the
media distribution process and therefore requires a re-join
of the CDN server (with marginal capacity requirement).
The higher the peer service time commitment t, the later the
CDN server re-join will take place (at time k1). A dilemma
now arises: To postpone k1 (thus minimizing CDN server in-
volvement), a larger t is desirable. However, t may become
so large that it forces a supplying peer to serve more sessions
than under the session-based policy, especially during stage
I (i.e., before k0) when the streaming demand is high.

5 Integrated Contribution Policy

In the previous section, we present the time-based contribu-
tion policy and identify a dilemma in determining the service
time commitment for supplying peers. Earlier, in Section 3,
we propose the session-based contribution policy and note
the “unused committed sessions” problem. By comparing
and contrasting the two policies, we realize that the problems
with the two policies are mutually exclusive, suggesting that
it is possible to design an integrated contribution policy that
combines the session-based and time-based policies and off-
sets their respective problems.

Specifically, each peer will commit an out-bound stream-
ing rate as in the previous two policies. Based on its class,
the peer will commit a number of streaming sessions xi, as
well as a service time ti, according the session-based and
time-based policies, respectively. As a supplying peer, it will
be free to retire, as soon as it fulfills either the session com-
mitment or the service time commitment - whichever hap-
pens earlier. At the beginning, when media streaming de-
mand is high, supplying peers tend to finish their session
commitment first. Toward the end of the media distribution
process, supplying peers are likely to finish their service time
commitment earlier.

Analysis of a CDN-P2P Hybrid Architecture for Cost-Effective Streaming Media Distribution 15

0 50 100 150
200

210

220

230

240

250

260

270

280

290

300

Time (in hours)

N
o.

 o
f R

ej
ec

tio
ns

CDN does not rejoin
CDN rejoins at K

1

Fig. 16 Time-based contribution policy: cumulative number of
request rejections over time, with and without CDN server re-
join (k1 ≈ 70)

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

Time (in hours)

S
tr

ea
m

in
g

ca
pa

ci
ty

 a
nd

 R
em

ai
ni

ng
 n

o.
 o

f p
ee

rs

N(k)
Remaining no. of peers

Fig. 17 Time-based contribution policy: N(k) and remaining
number of requesting peers, without CDN server re-join

5.1 Simulation Results

We perform simulations to evaluate the integrated contribu-
tion policy. We use the same parameters: Nc = 20, λ =
0.001, M0 = 2000, and ci = 2, 4, 8 with proportions pi =
0.2, 0.5, 0.3, respectively. The session-based contribution

ratio r =
∑3

i=1pi

(
xi

ci

)

is set as 1, 1.5, and 2 in different

simulations. The time-based contribution ratio r̂ =
∑3

i=1pi

(
ti

ci

)

is set as 3 (namely, ti = 6, 12, 24) in all simulations. k0 is
computed as per Equation (12) or (14). k1 is then calculated
using Equation (28) with t =

∑

i piti. The key observations
from the simulation results are as follows:

– Recall that the problem with the session-based contribu-
tion policy is the unused streaming capacity accumulated
toward the end of the media distribution process. Under
the integrated contribution policy, this problem is solved
by integrating the time-based contribution policy: Figure
18 plots the P2P streaming capacity versus time for dif-
ferent values of r. We see that the capacity begins to de-
crease (rather than to accumulate) after the initial growth
period. This is due to the fact that more and more sup-
plying peers fulfill their service time commitment earlier
than their session commitment, with the decreasing de-
mand for streaming. Furthermore, the higher the value of
r, the earlier the decline trend is exhibited, which corre-
sponds to an earlier handoff time k0.

– The problem with the time-based contribution policy is
that the dilemma in determining the service time com-
mitment t: a large t helps to postpone the re-join time of
the CDN server. However, a large t unfairly punishes the
early supplying peers, because they may have to serve
more than xi sessions as in the session-based policy. Un-
der the integrated policy, this problem is solved: In the
simulations, we observe that almost all supplying peers
that start before k0 fulfill their session-based commit-

ment first, so that they can retire well before their service
time commitment is fulfilled.
Figure 19 plots the number of cumulative streaming re-
quest rejections versus time for different values of r.
From the figure, there are few rejections toward the end
of the media distribution process. Interestingly, we ob-
serve that for r = 1.5 and r = 2, the media distribution
process may be completed (i.e., all clients are served)
before the computed CDN server re-join time (around
k = 110), in which case the CDN server actually does
not have to re-join.

In summary, the integrated contribution policy overcomes
the problems with the session-based and time-based poli-
cies. Under the integrated policy, the early supplying peers
fulfill their session commitment and retire before their ser-
vice time is up; while the later supplying peers serve fewer
than their committed number of sessions but stay in the sys-
tem for a longer yet finite period of service time. The inte-
grated policy achieves fast media distribution and low stream-
ing request rejection as in the session-based policy, yet it
strikes a better balance among peers with respect to their
contribution fairness.

5.2 Dimensioning of the Hybrid Architecture

By now, we have shown that the CDN-P2P hybrid architec-
ture requires careful dimensioning, due to the different con-
tribution policies, interrelated system parameters, and their
impacts on multiple performance metrics. Our analysis and
simulations provide a rigorous basis to guide such dimen-
sioning. For example, a possible “workflow” of system pa-
rameter dimensioning is as follows: Given the values of pa-
rameters M0, λ, ci, pi, Nc, as well as a target k0 we wish to
achieve, we can derive the peer session commitment xi as
well as the tolerable per peer capacity loss factor l, accord-
ing to the analysis in Section 3. If the integrated contribution

16 Dongyan Xu et al.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200

Time (in hours)

R
em

ai
ni

ng
 S

tr
ea

m
in

g
C

ap
ac

ity

r=1
r=1.5
r=2

Fig. 18 Integrated contribution policy: remaining streaming
capacity over time

0 20 40 60 80 100 120
400

450

500

550

600

650

700

Time (in hours)

N
o.

 o
f R

ej
ec

tio
ns

r=1
r=1.5
r=2

Fig. 19 Integrated contribution policy: cumulative number of
rejections over time

policy is adopted, we can further derive the peer service time
commitment ti in order to achieve a target k1

5 based on the
analysis in Section 4. Such dimensioning may not succeed in
one try - if so, adjustment of parameters (for example, k0, k1,
and/or Nc) may be performed, subject to certain constraints
such as the overall cost and the maximum session/time con-
tribution from each peer. Also note that we need to redo sys-
tem dimensioning whenever key system parameters change
- for example, when a new media file is released or when
the per-client file request rate λ deviates from the initial es-
timate.

6 Related Work

Content Distribution Networks have been successfully de-
ployed on the Internet, an example being the one operated by
Akamai. Technical issues in CDN have also been extensively
studied. For example, Chawathe et al. [7] study the efficient
transport of content from their original sources to the multi-
ple CDN servers. Kangasharju et al. [14] address the prob-
lem of object replication and placement in a CDN. Biliris et
al. [5] discuss the dynamic brokering of CDN server capac-
ity, and Apostolopoulos et al. [2] present flexible media data
coding for CDNs. Our work instead focuses on improving
the “last-hop” distribution in a CDN, i.e., the streaming of
media from each CDN server to the clients it serves.

P2P systems have attracted tremendous research atten-
tion in the past few years. Saroiu et al. [23] present the first
detailed measurement study of two popular P2P systems,
namely Napster and Gnutella. A number of distributed P2P
lookup services have been proposed, such as CAN [20], Chord
[27], Pastry [22], and Tapestry [30]. In our architecture, for
centralized management and accountability, we adopt the

5 As shown in the simulations in this section, if the target k1 is suf-
ficiently late, it is possible that the media distribution is completed be-
fore k1 and therefore the CDN server does not have to re-join.

“Napster”-like scheme by using the CDN server as the in-
dex server - a natural choice in a hybrid CDN-P2P system.

More recently, P2P media streaming systems have also
been proposed. C-star (www.centerspan.com) is a commer-
cial system which enables media streaming from multiple
suppliers to one receiver. Nguyen et al. [17] show the feasi-
bility of streaming media based on multiple senders. How-
ever, they do not address the media distribution and system
dimensioning issues. PALS [21] achieves quality adaptation
based on layer-encoded media for P2P streaming from mul-
tiple sender peers to a receiver peer. CoopNet [18,19] is
a scalable mechanism allowing peers to cooperate to dis-
tribute streaming media content when the CDN server is
overloaded. Our work also aims at reducing the load of the
CDN server. It complements CoopNet by proposing “CDN-
to-P2P” handoff, limited contribution policies, as well as
detailed analysis of system dynamics. A programming plat-
form is presented by Lienhart et al. [16] to support P2P mul-
timedia service development.

There is a body of results for multicast streaming to mul-
tiple requesters, known as application level multicast stream-
ing [4,8,24,28]. Narada [8] maintains and optimizes a mesh
among multiple receivers, upon which a multicast tree is
built for the streaming session. In PeerCast [4], a new re-
ceiver joins a streaming session by traversing the distribution
tree starting at the root, till it reaches a node with a sufficient
remaining capacity. Both NICE [3] and ZIGZAG [28] adopt
hierarchical distribution trees, and therefore scale up to a
large number of requesters. In another category of P2P mul-
ticast streaming, each requester collects data from multiple
upstream peers [6,15,18,25]. For example, CoopNet [18]
employs multi-description data coding and constructs multi-
ple distribution trees (one tree for each description) spanning
all participants. In P2P multicast streaming, it is generally
assumed that a peer, acting as a relay, contributes an out-
bound streaming rate that is at least equal to the full stream-
ing rate. Less effort has been devoted to P2P streaming to an
individual requesting peer, under the conditions that supply-

Analysis of a CDN-P2P Hybrid Architecture for Cost-Effective Streaming Media Distribution 17

ing peers are heterogeneous and each willing to contribute
only a fraction of the streaming rate. In addition, the me-
dia distribution process is asynchronous, different from the
synchronous nature of P2P multicast streaming.

In [10], a P2P file sharing system is modeled as a multi-
class closed queuing network. This allows for the analysis
of system throughput dynamics under various configurations
of the peer community. Our analysis instead models the dy-
namics of a streaming media distribution system. The free
riding problem has been studied in [1] (through a measure-
ment study) and [11] (through a game-theoretic analysis).
Both [1] and [11] advocate the use of payment mechanisms
in order to motivate the peers with incentives to contribute to
the system. Instead of an abstract payment model, our work
proposes much simpler peer contribution policies for rigor-
ous planning and dimensioning in a more disciplined peer
community.

7 Conclusion

We have presented a hybrid architecture for cost-effective
streaming media distribution. The architecture combines two
complementary technologies: CDN and P2P. For this archi-
tecture, we present three limited contribution policies for
supplying peers, so that the streaming capacity of the sup-
plying peers can be aggregated and exploited on a limited
basis: In the session-based policy, peers commit to partici-
pate in a limited number of streaming sessions. In the time-
based policy, peers commit to serve during a limited period
of service time. The integrated policy combines the session-
based and time-based contribution commitments, and allows
peers to retire when either commitment is fulfilled. We have
conducted a comprehensive study of the hybrid architecture:
In-depth analysis of the system dynamics is presented, re-
vealing the impact of different policies and parameters on
the progress, cost, and peer load of the media distribution
process. Extensive simulations are also performed to vali-
date the analysis and to reveal interesting observations. Both
our analytical and simulation results lead to systematic guide-
lines for the planning and dimensioning of the proposed hy-
brid architecture.

References

1. Adar, E., Huberman, B.: Free Riding on Gnutella. First Monday
5(10) (2000)

2. Apostolopoulos, J., Wong, T., Wee, S., Tan, D.: On Multiple De-
scription Streaming with Content Delivery Networks. Proceedings
of IEEE INFOCOM 2002 (2002)

3. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable Ap-
plication Layer Multicast. Proceedings of ACM SIGCOMM’02
(2002)

4. Bawa, M., Deshpande, H., Garcia-Molina, H.: Transience of Peers
and Streaming Media. ACM Workshop on Hot Topics in Networks
(HotNets-I) (2002)

5. Biliris, A., Cranor, C., Douglis, F., Rabinovich, M., Sibal, S.,
Spatscheck, O., Sturm, W.: CDN Brokering. International Work-
shop on Web Caching and Content Distribution (WCW 2001)
(2001)

6. Castro, M., Druschel, P., Kermarrec, A., Nandi, A., Rowstron, A.,
Singh, A.: SplitStream: High-Bandwidth Content Distribution in
a Cooperative Environment. 2nd International Workshop on Peer-
to-Peer Systems (IPTPS ’03) (2003)

7. Chawathe, Y.: Scattercast: an Architecture for Internet Broadcast
Distribution as an Infrastructure Service. Ph.D. Thesis University
of California, Berkeley (2000)

8. Chu, Y., Rao, S., Seshan, S., Zhang, H.: A Case for End System
Multicast. IEEE Journal on Selected Areas in Communications
(JSAC) 20(8) (2002)

9. Corless, R., Gonnet, G., Hare, D., Jeffrey, D., Knuth, D.E.: On
Lambert’s W function. Adv. Computational Maths. (1996)

10. Ge, Z., Figueiredo, D., Jaiswal, S., Kurose, J., Towsley, D.: Mod-
eling Peer-Peer File Sharing Systems. Proceedings of IEEE IN-
FOCOM’03 (2003)

11. Golle, P., Leylton-Brown, K., Mironov, I.: Incentives for Sharing
in Peer-to-Peer Networks. Second Workshop on Electronic Com-
merce (WELCOM’01) (2001)

12. Hefeeda, M., Habib, A., Botev, B., Xu, D., Bhargava, B.: Promise:
Peer-to-Peer Media Streaming Using Collectcast. Proceedings of
ACM Multimedia 2003 (2003)

13. Jiang, X., Dong, Y., Xu, D., Bhargava, B.: GnuStream: a P2P Me-
dia Streaming System Prototype. Proceedings of IEEE ICME
2003 (2003)

14. Kangasharju, J., Roberts, J., Ross, K.: Object Replication Strate-
gies in Content Distribution Networks. Computer Communica-
tions 25(4) (2002)

15. Kostic, D., Rodriguez, A., Albrecht, J., Vahdat, A.: Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh. Proceed-
ings of ACM SOSP 2003 (2003)

16. Lienhart, R., Holliman, M., Chen, Y., Kozintsev, I., Yeung, M.:
Improving Media Services on P2P Networks. IEEE Internet Com-
puting (2002)

17. Nguyen, T.P., Zakhor, A.: Distributed Video Streaming Over In-
ternet. Proceedings of SPIE/ACM MMCN 2002 (2002)

18. Padmanabhan, V., Wang, H., Chou, P.: Resilient Peer-to-Peer
Streaming. Proceedings of IEEE ICNP 2003 (2003)

19. Padmanabhan, V.N., Wang, H., Chou, P., Sripanidkulchai, K.: Dis-
tributing Streaming Media Content Using Cooperative Network-
ing. Proceedings of NOSSDAV 2002 (2002)

20. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.:
A Scalable Content-Addressable Network. Proceedings of ACM
SIGCOMM 2001 (2001)

21. Rejaie, R., Ortega, A.: PALS: Peer-to-Peer Adaptive Layered
Streaming. Proceedings of ACM NOSSDAV 2003 (2003)

22. Rowstron, A., Druschel, P.: Pastry: Scalable Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems. Pro-
ceedings of IFIP/ACM Middleware 2001 (2001)

23. Saroiu, S., Gummadi, P., Gribble, S.: A Measurement Study of
Peer-to-Peer File Sharing Systems. Proceedings of SPIE/ACM
MMCN2002 (2002)

24. Shi, S., Turner, J.: Routing in Overlay Multicast Networks. Pro-
ceedings of IEEE INFOCOM’02 (2002)

25. Snoeren, A., Conley, K., Gifford, D.: Mesh-Based Content Rout-
ing Using XML. Proceedings of ACM SOSP 2001 (2001)

26. Stavrou, A., Rubenstein, D., Sahu, S.: A Lightweight, Robust P2p
System To Handle Flash Crowds. Proceedings of IEEE ICNP
2002 (2002)

27. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.:
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Ap-
plications. Proceedings of ACM SIGCOMM 2001 (2001)

28. Tran, D., Hua, K., Do, T.: Zigzag: An Efficient Peer-to-Peer
Scheme for Media Streaming. Proceedings of IEEE INFO-
COM’03 (2003)

29. Xu, D., Hefeeda, M., Hambrusch, S., Bhargava, B.: On Peer-to-
Peer Media Streaming. Proceedings of IEEE ICDCS 2002 (2002)

30. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An Infrastructure
for Fault-tolerant Wide-area Location and Routing. UC Berkeley
Computer Science Technical Report (CSD-01-1141) (2001)

