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Abstract. High-resolution nuclear magnetic resonance (NMR) spectra contain 
important biomarkers that have potentials for early diagnosis of disease and 
subsequent monitoring of its progression. Traditional features extraction and 
analysis methods have been carried out in the original frequency spectrum 
domain. In this study, we conduct feature selection based on a complex wavelet 
transform by making use of its energy shift-insensitive property in a multi-
resolution signal decomposition. A false discovery rate based multiple testing 
procedure is employed to identify important metabolite features. Furthermore, a 
novel kernel-induced random forest algorithm is used for the classification of 
NMR spectra based on the selected features. Our experiments with real NMR 
spectra showed that the proposed method leads to significant reduction in 
misclassification rate. 
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1   Introduction 

High-resolution nuclear magnetic resonance (NMR) spectroscopy has been found to 
be useful in characterizing metabolic variations in response to disease states, genetic 
medication, and nutritional intake. Given the thousands of feature points in each NMR 
spectrum, the first step is to identify the features that are mostly related to the 
problems being studied. Many of the feature points are either redundant or irrelevant. 
Removing them may largely reduce the computational cost while improving the 
stability (e.g., noise robustness) of the subsequent analysis and classification 
processes. Such dimensionality reduction procedures are mostly carried out directly in 
the original frequency domain. The widely used methods for identifying important 
metabolite features in spectral data include principal component analysis (PCA) and 
partial least squares (PLS) [1,2], but the principle components from PCA or PLS do 
not provide clear interpretations with respect to the original features. In [3], a genetic 
programming based method was proposed to select a subset of original metabolite 
features in NMR spectra for the classification of genetically modified barley, though 
the method may not be reliable for high-dimensional and noisy data. 
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The wavelet transform provides a powerful and flexible framework for localized 
analysis of signals in both time and scale, but its applications to NMR spectra has not 
been fully exploited. In [4,5], wavelet transform was used for the detection of small 
chemical species in NMR spectra by suppressing the water signal. In [6], decimated 
discrete wavelet transform was employed to analyze mass spectrometry data (similar 
to NMR spectra) with class information. In [7], NMR spectra were analyzed using 
complex wavelet transforms, which have the important property of energy shift-
insensitive. In particular, the false discovery rate based multiple test procedure leads 
to more reliable feature selection results when intensity and position shifts exist 
between multiple NMR spectra being compared (which is always the case in the data 
acquired in practice).  NMR spectrum based classification is not only a practically 
useful application. It also provides a direct test of the quality of the feature extraction 
procedure. In [7], a simple classification tree algorithm was used. In our present 
study, we used Gabor wavelet transform which achieved the best result in [7]. We 
employed a new cross-validated testing scheme and identify different feature sets for 
our usage. To test the results of our feature selection scheme, we also compare three 
different classification approaches: classification tree, random forest and kernel-
induced random forest, which is a novel algorithm for the classification of high-
resolution NMR spectra. In [8], a classification tree algorithm was described in detail. 
Later [9] proposed the ensemble of classification tree which was called random forest. 
Random forest is a powerful classification tool which uses many randomly generated 
large classification trees and combines them to vote for a decision. The instability of a 
single classification tree was greatly reduced by the ensemble. A kernel-induced 
random forest method was proposed in [10]. A kernel function is computed for every 
two observations based on all the features or a reduced feature space. Then the 
observations are used to classify other observations via a recursive partitioning 
procedure and its ensemble model. The classification accuracy is improved with the 
kernel-induced feature space. 

2   Method 

2.1 Complex wavelet transform 
 
We consider complex wavelets as dilated/contracted and translated versions of a 
complex-valued “mother wavelet” w , where xj cexgx ω)()( = cω  is the center 
frequency of the modulating band-pass filter, and  is a slowly varying and 
symmetric real-valued function. The family of wavelets derived from the mother 
wavelet can be expressed as: 
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where and  are the scale and translation factors, respectively. 
Considering the fact that 
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     In other words, we can use this to compute the wavelet coefficient  at any 
given scale  and location 

),( psF
s p . Using the convolution theorem and the shifting and 

scaling properties of the Fourier transform, it is not difficult to derive that 
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where )(ωF  and )(ωG

)x

 are the Fourier transforms of  and , respectively. 
Now suppose that the function  has been shifted by a small amount , i.e., 
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. This corresponds to a linear shift in the Fourier domain: 
. Substitute this into Eq. (3) and assume that xcΔωjeF ω )(' xΔ  is small relative 

to the envelop function , then we can derive )(xg
                                               ),(),(' psFpsF =  .                                  (4)                

This implies that the magnitude (or energy) of the complex wavelet coefficient does 
not change significantly with a small translation. Such an energy shift-insensitive 
property is very important in the analysis of NMR spectra because a small 
misalignment between multiple NMR spectra is unavoidable (even after 
preprocessing), and the misalignment may interfere with direct comparisons between 
NMR spectra. 

Among the various complex wavelets available, we choose the Gabor wavelets 
mainly for two reasons: First, according to the Gabor uncertainty principle, the time-
frequency resolution of a signal is fundamentally limited by a lower bound on the 
product of its bandwidth and duration, and the Gabor filters are the only family of 
filters that achieve this lower bound [11]. In other words, the Gabor filters provide the 
best compromise between simultaneous time and frequency signal representations. 
Second, the Gabor wavelets are easily and continuously tunable for both the center 
frequencies and for bandwidths. 

2.2 Feature selection based on a multiple testing procedure 

The most straightforward approach for feature selection in the wavelet transform 
domain is thresholding. However, this method may result in ignorance of small 
magnitude coefficients that are indeed important for classification. In this study, we 
identify complex wavelet coefficient features to maximize the separation of classes. 
More specifically, a multiple testing procedure that controls the false discovery rate 
(FDR) is employed to identify significant Gabor coefficients that discriminate 
between the spectra under different conditions. The FDR is the error rate in multiple 
hypothesis tests and is defined as the expected proportion of false positives among all 
the hypotheses rejected [12]. In our problem, the rejected hypothesis is interpreted as 
the significant coefficients necessary for classification. 

The FDR-based procedure is explained with our experimental data. Let jkδ  be the 
magnitude of the Gabor coefficient at the k-th position of the j-th class. Our 

 



experimental data comprise 136 NMR spectra in which half of the spectra were taken 
from the zero-SAA phase and the other half were taken from the supplemented-SAA 
phase. The goal is to identify a set of kδ  that maximizes the separability between the 
two SAA phases. For each wavelet coefficient, a null hypothesis states that the 
average magnitudes of Gabor coefficients are equal between the two SAA phases, and 
the alternative hypothesis is that they differ. The two-sample t statistic is 
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where k1δ , , and  are the sample mean, variance, and the number of samples 

from the first condition, respectively. Similarly, 
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k2δ , , and  are obtained from 
the second condition. By asymptotic theory, tk approximately follows a t-distribution 
on the assumption that the null hypothesis is true. Using this, the p-values for 

2
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kδ  can 
be obtained. In multiple testing problems, it is well known that applying a single 
testing procedure leads to an exponential increase of false positives. To overcome 
this, the methods that control family-wise error rates have been proposed. The most 
widely used one is the Bonferroni method that uses a more stringent threshold [13]. 
However, the Bonferroni method is too conservative, and it often fails to detect the 
“true” significant features. A more recent multiple testing procedure that controls 
FDR was proposed by Benjamini and Hochberg [12]. The advantage of the FDR-
based procedure is that it identifies as many significant hypotheses as possible while 
keeping a relatively small number of positives [14,15].  

2.3 Kernel-induced Classification Tree and Random Forest 

A classification model was used to examine the advantage of using the complex 
wavelet transform and FDR-based feature selection in NMR spectra. We used a 
classification tree, one of the widely used classification methods. Classification trees 
partition the input (feature) space into disjoint hyper-rectangular regions according to 
performance measures such as misclassification errors, Geni index, and cross-entropy 
and then fit a constant model in each disjoint region [16]. The number of disjoint 
regions (equivalent to the number of terminal nodes in a tree) should be determined 
appropriately because a very large tree overfits the training set, while a small tree 
cannot capture important information in the data. In general, there are two approaches 
to determining the tree size. 

The first approach is the direct stopping methods that attempt to stop tree growth 
before the model overfits the training set. The second approach is tree pruning that 
removes the leaves and branches of a full-grown tree to find the right size of the tree. 
In the present study the Geni index was used as a performance measure. To determine 
tree size, we stop the growth of a tree when the number of data points in the terminal 
node reaches five. 

In order to estimate the true misclassification rate of classification tree models, we 
used a cross-validation technique. Specifically, we used a four-fold cross validation in 

 



which the experimental data were split into four groups corresponding to four 
subjects. Three subjects were used for training the models, and the one remaining 
subject was used for testing. This process was repeated three more times. The final 
classification results from the four different testing samples were then averaged to 
obtain the misclassification rates (or cross-validated error rates) of the classification 
tree models. 

A kernel is a function K, such that for all ixr and p
j Xx ∈
r

, i, j =1, 2, …, n 

                    K( ixr , jxr ) = >< )(),( ji xx rr φφ                                     (6)                         

where  is  a (non-linear) mapping from the input space to an (inner product) feature 
space. If the observation i is fixed in the training sample, and observation j is a new 
input, then the kernel function above can be treated as a new feature defined by 
observation i, denoted as K(

φ

⋅,ixr ). Some popular kernels are inner product kernel, 
polynomial kernel and Gaussian (radial basis) kernel.  

A classification tree model is a recursive partitioning procedure in the feature 
space. Starting from the root node, at each step, a greedy exhaustive search is 
implemented to find the best splitting rule such as “Xi<c” for numerical features. If 
the answer is yes, then the observation will move to the left child node and move to 
the right child node otherwise. The procedure is implemented recursively until a very 
large binary tree is constructed. A large tree usually overfits the training sample. Then 
cross-validation is used to prune the tree back to its proper size. A single classification 
tree described above is highly interpretable but quite instable and weak in prediction. 
An example is shown in Fig. 1. A random forest algorithm is simply a replication of 
the classification tree procedure while introducing a random vector in the construction 
space, such as limiting the number of features to be searched at every step growing 
the tree and/or bootstrapping the data set. The trees in a random forest are usually 
very large and need no pruning. Due to the instability of classification trees, they are 
quite different and diversified when the random vector is introduced in the process. 
Each classification tree generally is a low-bias but high-variance model. When they 
are combined to vote for a decision, the variance is reduced and the classification 
power is very strong. Another nice result is that including more trees in the random 
forest will not overfit the training sample. However, the random forest described 
above can only deal with numeric data. For non-numeric data such as images, they 
cannot be directly used.  

Instead of using the original features in the data space to construct splitting rules, 
kernel functions based on observations are used. Since the definition of kernel is very 
flexible to handle various types of data, the potential of random forest is greatly 
extended and enhanced. Not only the feature space is enlarged, but also some 
complicated and non-linear patterns between observations can be directly learned by 
random forest. Please see the second tree in the figure for an example of a kernel-
induced classification tree. A kernel-induced random forest is simply a replication of 
many such trees with a random vector introduced. By default, the kernel we use is 
Gaussian. 
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Fig. 1. Left: an example of a classification tree with 3 terminal nodes. Note that Xi and 
Xj are features in the data space. Right: an example of a kernel-induced classification 
tree with 3 terminal nodes. Note that Xi and Xj are observation vectors in the data 
space and the K( , )’s are kernel functions defined on these observations.  

3   Result 

3.1. Experimental data 

We used plasma samples obtained from four healthy subjects under controlled 
metabolic conditions in the Emory General Clinical Research Center (GCRC). The 
subjects signed an informed consent approved by the Emory Institutional Review 
Board. During the 12-day GCRC admission, the subjects consumed defined diets at 
standardized intervals. For the first two days (equilibration), the subjects consumed 
balanced meals from a plan in which foods were selected to ensure adequate energy, 
protein and sulfur amino acid (SAA) intake (SAA at 19 mg/kg/day). After this phase, 
subjects were placed on constant semipurified diets designed to alter SAA intake. The 
diets provided adequate energy and amino acid nitrogen to meet the estimated 
maintenance needs of individual subjects. The L-amino acid component of the diet 
was altered to provide zero SAA during the initial five days and 117 mg/kg per day 
during the latter five days of the GCRC stay. Blood was drawn serially 34 times from 
four subjects over ten days, and 1H-NMR spectra were obtained by a Varian INOVA 
600 MHz instrument. During the first 17 time points, blood was collected from each 
subject consuming zero SAA (zero-SAA phase) and 117 mg/kg per day SAA during 
the latter 17 time points (supplemented-SAA phase). Thus, the total number of spectra 
used in this study is 136 (4 subjects×34 spectra). 

Raw NMR spectra require preprocessing, which includes phase/baseline 
correction, elimination of uninformative spectral regions containing no significant 
metabolite signals, alignment, and normalization relative to the internal standard. The 
NUTS software (Acron NMR Inc., Livermore, CA) was used for phase/baseline 
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correction. To adjust for the variable suppression of the large water signal in NMR 
spectra and enhance the detection of metabolites, water signal and other 
uninformative spectral regions were eliminated. We used MATLAB (Mathwork Inc., 
Natick, MA) with the beam search algorithm [17] for initial spectral alignment. 
Finally, normalization of NMR spectra was achieved by scaling to the integral of the 
internal standard. 

3.2 Classification results 

To evaluate the adequacy of the metabolite features obtained from Sections 3.1 and 
3.2, we used the Gabor wavelet transformed data to show our classification 
performances for different approaches. Originally, there were 8444 features in the 
domain. After Gabor wavelet transformation, there were 8181 features. Then with the 
FDA-based procedure at the significance level of 0.01, there were 20 features 
selected. To provide an honest estimate of the classification performance of the 
different approaches under the FDA procedure, we use the following strategy: we 
divide the 136 spectra into four folds, i.e., each subject with 34 spectra is one fold.  
We use this subject-based cross validation because we try to show our potential to use 
current information on some subjects to classify other subjects. If the whole data set is 
randomly divided into a number of folds without the consideration of subjects, the 
result may not be informative to evaluate the true performance of our approach for the 
future. Then we separate each fold (subject) out as test set and apply the FDA 
procedure on the training data combined from the rest of the three folds. Note that 
when the procedure of cross-validation is used, these selected features may not be the 
same for different folds. Classification error rates obtained from cross validation are 
shown to evaluate the efficacy of the three proposed classification methods with our 
feature selection scheme (Table 1). Our experiences suggest that feature selection is 
important for all three classification approaches. In the selected feature space, the 
kernel-induced random forest performs the best among the three methods while 
random forest ranks the second. 
 
 
Table 1. Cross-validated Misclassification Rate for the three classification approaches 
with FDA feature selection. 
 

Method         Classification       Random              Kernel-induced 
                           Tree                  Forest                Random Forest 
Error rate         33.1%                 29.5%                         26.5% 

 

4   Conclusion 

We have used a complex wavelet transform combined with the FDR-based feature 
selection method to improve feature selection and classification of high-resolution 

 



 

NMR spectra. We also compared three different classification methods and 
introduced the novel approach of kernel-induced random forest. The ability of wavelet 
transforms to break down the original spectrum into different resolution levels allows 
us to investigate the metabolite feature with different scales. The energy shift-
insensitive property in the complex wavelet transform can efficiently handle 
misalignment and enables direct comparison among multiple NMR spectra. The FDR-
based feature selection procedure treats all the wavelet coefficients simultaneously 
and systematically identifies important features in NMR spectra. The selected features 
greatly improve the classification accuracy when the kernel-induced random forest is 
used since the kernels contain more efficient information in the selected feature space. 
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