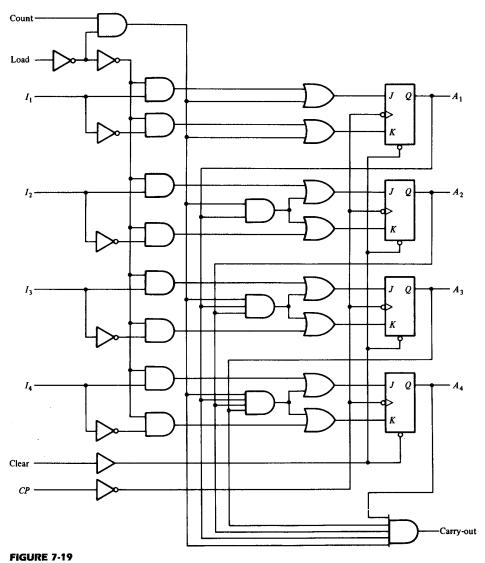

Problem Set 7

- A sequential circuit has two inputs x₁ and x₂ and one output z.
 Whenever an x₁=1 is observed, the output becomes I provided x₂=1 has been observed exactly twice since the last time x₁=I was observed. The output remains I until x₂=I is observed. Draw the state diagram as (a) a Mealy machine, and (b) as a Moore machine.
 - 7-4 Design a sequential circuit whose state diagram is given in Fig. 6-31 using a 3-bit register and a 16×4 ROM.


FIGURE 6-31State diagram for the circuit of Fig. 6-30

7-9 Draw the logic diagram of a 4-bit register with four D flip-flops and four 4×1 multiplexers with mode-selection inputs s_1 and s_0 . The register operates according to the following function table:

<u>S1</u>	S ₀	Register Operation
0	0	No change
0	1	Complement the four outputs
1	0	Clear register to 0 (synchronous with the clock)
1	1	Load parallel data

- **7-17** How many flip-flops will be complemented in a 10-bit binary ripple counter to reach the next count after the following count:
 - (a) 1001100111;
 - (b) 0011111111.
- **7-23** Design a synchronous BCD counter with JK flip-flops.

7-27 Using two circuits of the type shown in Fig. 7-19, construct a binary counter that counts from 0 through binary 64.

4-bit binary counter with parallel load