B E&QCE 223 L]

E&CE 223
Digital Circuits & Systems

Lecture Transparencies
(Boolean Algebra & Logic Gates)

M. Sachdev

n
Department of Electrical & Computer Engineering, University of Waterloo

m E&CE 223 L]

40 of 92

Section 2: Boolean Algebra &

Logic Gates
= Major topics
o Boolean algebra NAND & NOR gates
o Boolean algebra theorems AND-OR-INVERT
o Two valued Boolean algebra Prime implicants
o Minterms Quine-McCluskey method

Sum-of-products
Maxterms
Product-of-sums
Karnaugh maps
Don’t care conditions
Types of gates
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Switching & Boolean Algebra

= A branch of algebra used for describing and designing sys-
tems of two valued state variables

o Used by Shannon (1938) to design relay circuits

o Basic concepts were applied to logic by Boole (1854) hence is
known as Boolean algebra

o Switching Algebra is two valued Boolean algebra

= Boolean algebra

o A set B of elements {a,b,c ..... } together with two binary opera-
tors (.) and (+) , form a Boolean algebra iff the following postu-
lates hold (Huntington 1904):

1. There is closure wrt both (.) and (+); i.e. for all a, b[] B, we ob-
tain a uniqgue cOB

e.g,c=a+bandc=a.b
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2. There exists in B identity elements {0,1} wrt (+) and (.) such that
at0O=aandal=a
3. (+) and (.) are commutative, i.e.,
at+tb=b+a; ab=bha
4. (+) and (.) are distributive , i.e.,
a.(b+c) = (a.b) + (a.c); a+(b.c) = (a+b).(a+c)

5. For each element al B , there exists an element a OB such
that

a+a'=landaa =0
Note: a’ is called complement of a [a’ is also written as a ]
6. There exists at least two elements a, b0 B such that a#b

o In general, the number of elements may be 2". Switching alge-
bra and logic use the n = 1 case
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Basic Theorems of Boolean Algebra

= Duality principle

o Every algebraic identity deducible from the postulates of Bool-
ean algebra remains valid if binary operators (.) and (+), and the
identity elements 0 and 1 are interchanged throughout

o Proof

Follows from the symmetric definition of Boolean algebra with re-
spect to the two binary operators and respective identity elements,

e.g.,
a+b=b+a ab=b.ua;
ata=1 aa =0
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= Uniqueness theorems [not in the book]
o The identity elements are unique
o Proof

Let * be either of the binary operators, and assume it has two iden-
tity elements e; and e,

Then forany al B , from Postulate 2 we have:
a*e; = a
a*e, = a

Now, let a = e, in the first equation, and a = e; in the second equa-
tion, yielding

e)*e; = ey

ei*e, = eq

From postulate 3 we have
er*e; = es*e,

and hence e, = e;

QED
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Theorem 1(a): X + X = x

X+XxX=(X+x).1 by postulate 2
= (X + X)(X + X) by postuate 5
=X+ xx’ by postulate 4
=x+0 by postulate 5
=X

Theorem 1(b): x .x =X

XX =XX+0 by postulate 2
= X.X + X.X’ by postuate 5
= Xx(x + x') by postulate 4
=x.1 by postulate 5
=X

O

Note: the theorem 1(b) is dual of theorem 1(a)
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Theorem 2(a): x+1=1

x+1=1.(x+1) by postulate 2
=(x+x).(x+1) by postuate 5
=x+x.1 by postulate 4
=x+x by postulate 5
=1

Theorem 2(b): x.0=0
o by duality

Theorem 3: (X’)’ = x

1. Complement of X" is (X)’

2. From postulate 5 which defines the complement, we have
X+x=1 andx'.x=0

therefore x is the complement of x’

Since the complement is unique, (X’)' = X
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Theorem 4 (associative)

X+(y+z)=X+y)+z and X.(y.z) = (X.y).z

Theorem 5 (De Morgan’s)
x+y)=x.y and xXy) =x"+y

The theorems involving 2 or 3 variables may be proven alebra-
ically from postulates and theorems already proven

Theorem 6(a): X + X.y = X (absorption)
X+ xy=x.1+xy by postulate 2
=x.(1+vy) by postuate 4
=x.(y+1) by postulate 3
=x.1 by postulate 5
=X

Theorem 6(b): x.(x + y) = x by duality
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Theorem 4

o Proof x+(y+z)=(Xx+y)+z

Stepl: x+x(y+2) =X (T6)
=X.(Xx + 2)(Th. 6)
= (X +x.y).(x + 2) (T6)
=X+ (x.y).z (P4)

Step 2: X'+ X.(y.2) = (X' +Xx).(xX +vy.2) (P4)
=1.(X' +Vv.2) (P5)
=X'+Vy.z (P2)
= (X +y).(X +2) (P4)

=[1.(X +y)].(X" + 2) (P2)
= [(X" + x).(x" + Y)].(X" + 2) (P5)
= [X' +x.y].(X" + 2) (P4)
=X+ (x.y).z
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Step 3: Take (.) operation of the left hand side terms above
[X + X.(y + 2)].[X'+ x.(y.2] =[x+ (Xy).z].[X + (X.y).zZ]
Then
XX+ X.(y.2) =xx'+(X.y).z (P4)
0 + x.(y.2) =0 +(x.y).z (P5)
X.(y.2) = (X.y).z QED (P2)
= Theorem 5
(x+y)y=x.y and (Xy)y =x+y
1 (xy)(x'+y’) = (xy)x" + (xy)y’ (P4)
= (xx)y + x(yy) (Th4 & P3)
=0y +x.0 (P5)
=0+0 (Th2)
=0 (P2)
2. (x+y)+(X'+y’) = [x+(X'+y").[y+(x'+y")] (P4)
= [(x+xX) + y'LI(y+y) + X] (Th4 & P3)
=[1+y].[1+X] (P5)
=1.1 (Th2)
=1 (P2)

= therefore, by uniqueness of complement and P5

(xy) =x+y
other relation follows from duality

Department of Electrical & Computer Engineering, University of Waterloo
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Two Valued Boolean Algebra

s B= {O,l}

= Definition of (.) and (+) operations and of complements

a b |ab a b |ath a|a
0 0] O 0 0] O 0|1
0 1|0 0 1|1 1|0
1 0|0 1 0|1 0|1
1 1 1 1 1 1 110
‘ 0 1 +/ 0 1
0o[0 O 0[O0 1
110 1 111 1
a.b atb
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Boolean Algebra: Applications

= Logic
1
0

True

False

AND AOB
OR ADOB
NOT

= Algebra of sets (classes)

1
0

| (universal set)
O (null set)
Intersection
Union AOB
Complement (universal set less current set)

AUB

Department of Electrical & Computer Engineering, University of Waterloo
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= Switching algebra

1
0

High voltage (true)
Low voltage (false)
AND

Output is high voltage iff all inputs are high voltage

OR

Output is high voltage if any input is high voltage

NOT (Inverter)

Output is low voltage if input is high voltage

Output is high voltage if input is low voltage

n
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Digital Logic Gates (positive logic)

High voltage (true)
Low voltage (false)
AND gate

Output is high voltage iff all inputs are high voltage

OR gate

Output is high voltage if any input is high voltage

NOT (Inverter) gate

Output is low voltage if input is high voltage

Output is high voltage if input is low voltage

ot 1T

NOT gate OR gate

B—

D

AND gate

4
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Digital Logic Gates (negative logic)

Low voltage (true)

High voltage (false)

AND gate

Output is low voltage iff all inputs are low voltage
+ OR gate
Output is low voltage if any input is low voltage
NOT (Inverter) gate
Output is low voltage if input is high voltage
Output is high voltage if input is low voltage

A
A z N\ Lz A
’\—
B B |

NOT gate OR gate AND gate

N

n
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Representation of Boolean Function

= Boolean functions are represented as
o Algebraic expressions: Fi= fix,y,z) Fro=x+yz
o Truth table

-

Rl PR, O|lOlO|lO] X
PR O Ol oO|lo|Xx
Rl Ol Ol Ol O|N
Ol O|FR|O|r|F|FP|lFlT
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Boolean Function: Implementation

: [
x+>0

= Complement of a function
F()=1ifF()=0 and F()=0ifF()=1

o If Fis expressed algebraically, F’ is obtained by (repeated)
applicayions of De Morgan’s theorem, e.g.,

Fl=x+vyz

FLI'=(X"+y'z) =x.(y'z) z
1 _
L) Dy

X

[ ] 58 of 92
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Extension of De Morgan’s Theorem

= If the expression has parenthesis, apply De Morgan’s theorem
to the terms in the parenthesis, e.g.,

[ab(c +d)e]’=a ' +b’ '+ (c+d) +¢€’
=a +b +cd +e
= In general

(fixy,z,., D = foxy,z2,+,.)
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Canonical Forms

Minterms

o A minterm is an AND term in which every literal (variable or its
complement) in a function occurs once;

o For n variables, there are 2" minterms

o Each minterms has a value of 1 for exactly one combination of
values of the n variables, e.g., n =3

n
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X y z| Corresponding minterm designation
000 X'y'z’ mg
0 01 X'y'z m;
010 X'yz’ m,
011 X'yz ms
100 Xy’'z’ my
101 Xy’'z Mms
110 Xyz’ Mg
111 Xyz m-

One method of writing a Boolean function is in the canonical
minterm form ( canonical sum of products form), e.g.

F=XYyz+xy'z+ xyz’
=mq + Mg + Mg

5 (1,5,6)

Department of Electrical & Computer Engineering, University of Waterloo
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= The canonical sum of products of F can be written directly

from the truth table

Xy z F1 Correspond-
ing minterm

000 1 Mg

0 01 1 m;

010 1 mo

011 1 ms3

100 0

101 1 msg

110 0

111 0

F1 = 2(0,1,2,35)

=XYy'Z +Xyz+Xyz +Xyz+XYy'z

Mg + My + My + M3 + Mg

Department of Electrical & Computer Engineerin
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F = z (all minterms not in F)

The canonical sum of products of F’ can also be written direct-
ly from the truth table

X

y

z

F1

Correspond-
ing minterm

Mg

my

my

mg

Mg

Rl OOl © O
R R O|lO|RrR|Ir o ©

R O RP ORI Ol R O

OO R ORIk Rk

F'1 =% (46 7) (from previous example) =m, + mg + m7
= Xy'Z' + xyz’ + xyz

Department of Electrical & Computer Engineering, University of Waterloo
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Maxterms

= A maxterm is an OR term in which every literal (variable or its
complement) in a function occurs once.

o Each maxterm has a value of O for one combination of values of
the n variables

X y z| Corresponding minterm designation
00 O X+y+z Mg
0 01 X+y+7 M4
010 X+y +z M,
011 X+y +7 M3
100 X'+y+z My
101 X+y+7 Mg
110 X+y +z Mg
111 X +y +27 M-
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Maxterms and Minterms

= Different arrangements for minterms and maxterms
Mo =XYyZzZ =(X+y+2z)=Mj
In general, m; = M’;

= An alternate method of writing a Boolean function is the ca-
nonical maxterm form (canonical product of sums form)
F2=(x+y+2)(X+Y +2)(x +y +Z)(X +y +2)(X +y' +2)
= MgMoMgM4M7 = T1(0,2, 3 4 )

= The canonical product of sums can be written directly from
the truth table

65 of 92
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Xy z F2 Correspond-
ing maxterm

00O 0 Mo

0 01 1

010 0 M,

011 0 Mj

100 0 My

101 1

110 1

111 0 M-

0 F2=(XX+y+7)(x+y +2)(x+y +Z)(X' +y + Z)(X' +y' + Z)
o similarly, F'2 = T (all maxterms not in F2)

0
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Standard Forms

= In canonical forms, each minterm (or maxterm) must contain
all the variables, either true or complemented

o These forms can be simplified
o In standard forms , terms may contain one, two, three, ... varia-

bles
o Two types of standard forms (i) sum of products; (ii) product of
sums
= Examples
Fl=xy+yz (sum of products, standard form)

F2 = (x+y')(y+z) (product of sums, standard form)

67 of 92
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Canonical vs Standard forms

o Standard forms are converted into canonical forms by use of
identity elements, complement, and distributive postulates

Fl=xy+yz (standard form)
=xyl+1lyz
=xy(z+7) + (x+Xx)y'z
= Xyz + Xyz' + xy'z + x'y’'z (canonical form)

o Non standard forms are converted to standard forms in the
same fashion

F3 =(xy + z)(xz + y'z) (non-standard form)

Xy(Xz + y'z) + z(xz +y’z)

XyzZ + Xyy'z + Xz +y’'z

Xyz + Xz +y’'z

Xz +y’'z (standard form)

| ] 68 of 92
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Simplification of Boolean Functions

o Algebraic - frequently tricky

o Karnaugh map - functions of 2,3,4,(5,6) variables

o Tabular (Quinne-McClusky) method - more than 4 variables
(computer programs)

= Algebra
F1=x+XYy
= (x ) (x +y)
=X + y
F2 =xy +yz + zx’

Xy + (X + X' )yz + zx’

xy(1 + z) + X'yz + zx’

=Xy + X'z

69 of 92
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Karnaugh Maps (K Maps)

= A Karnugh map is a graphical representation of a truth table

o The map contains one cell for each possible minterm
o adjacent cells differ in only one literal, i.e., x or X’

« Two variables, F = f(x,y)

y y

! /\ ! /\
X 0 1 X 0 1
0 mo mil 0| xy X'y

X < m2 | m3 X { Xy | xy

o Function is plotted by placing 1 in cells corresponding to mint-
erms of function

o Example, F = X'y

u 70 of 92
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K Maps with 3 and 4 Variables

= 3variables, F = f(x,y,z); 4 variables, F = f(w,X,y,z)

y y
) o o lu 10 ) o o lu 1w
O| mo | mi| m3 | m2 0 |xyZ|xyz|xyz |xyz
X E m4 m5 | m7 mé X E Xy'Z | xy'z | xyz xyz'

yz
wx\, 00 01 i1 10

00 m0 ml m3 m2

01 m4 m5 m7 | M6
X
[11 mi2 | mi3 | mi5 | mi4
w

10 m8 | m9 | mil | mi0

(I
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F=w =x(x+xX)(y+y')(z+Z') F=xy
yz yz
WX 00 01 11 10 WX 00 01 11 10
00 00
01 01
11 1 1 1 1 11
F=wx'z
yz

WX 00 01 11 10

00

01

11

10

n
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K Map Boolean Funct. Simplification

= To write simplified function, find maximum size groups (mini-
mum literals) that cover all 1s in map

o 8 cells --> single literal
o 4 cells --> two literals
o 2 cells --> three literals

o 1 cell -->four literals

= Guidelines for logic synthesis
o Fewer groups: fewer AND gates and fewer input to the OR gate
o Fewer literals (larger group): fewer inputs to AND gate

= Synthesis (design) objectives

o Smallest number of logic gates
o Number of inputs to logic gate

Department of Electrical & Computer Engineering, University of Waterloo
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Example

= Consider the following K map
o Nothing must be a single cell
o Four groups of two cells each

o nothing left uncovered F= WXy +wxy +wWyz+wy'z
yz
= The group of 4 (xz) term is not  wx 00 o 1 10

needed
00 1
01 1 1 1
1 1 1 1
10 1
. 740192
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Product of Sum Expression

= Recall: Let F be the function

F = Z (all minterms not in F)
F= 1 (all minterms notin F)’ (de morgan’s theorem)

o Therefore, one can obtain F’ by vz F=XZ+xy +wyZz
grouping all Os on K map, and then > 00 01 11 10
taking the complement to obtain

product-of-sum form 00 1 _1} o || 1
o Hence, —
PR 1 LA
F=W +Xx)(y +2)X +2) 01 0, J 01 |10
| | ! |
in sum-of-product form R D ER T
1 |0 0 |10 |0]
0,10 _ 10, 1.0
= Should check both, sum of products, TP : T —
and product of sums 10 |1 1o ||2

o One is often simpler than the other

F =wx + yz+ xZ
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Plotting Product of Sum

o Given, F= (W +Xx)(x+y +2)(y +2)
F'=wx +XxXyz' +y’z’

yz
W 00 01 11 10

00

01

11

10

n
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Don’t Care (Incompletely Specified)
Conditions

= Some times, not all values of a function are defined

o Some input conditions will never occur
o We don’t care what the output is for that input condition

= In these cases, we can choose the output to be either 0 or 1,
whichever simplifies the circuit

o Example: a circuit is to have an output of 1 if a binary coded
decimal (BCD) digit is a multiple of 3

O

digit wWXyz F
0 0000
1 0001 0

o

Department of Electrical & Computer Engineering, University of Waterloo
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0010
0011
0100
0101
0110
0111
1000
1001
1010 don’t care condition
1011 .,

1100 .

1101 - "

1110 - "

1111 - "

o F= 2(3,6,9)+d(10,11,12,13,14,15)

© 0 N O o b~ WDN
O O »r O O +» O
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Don’t Care: Plotting

= Don't cares are plotted as X in the K map

o Sum of products: treat X as 1 if it allows a larger group
o Product of sums: Treat X as 0 of it allows a larger group
o F1=wz + xyz' + X’yz (sum of products, (a))

o F2'=xz+wy' +x'2' (recall F' = z (all minterms not in F)
o F2=(X"+2Z)(w + y)(X + 2)

yz yz
w00 oo 1 1 10 w00 or 11 10
1 \ | 1
00 1) 00 | “o/| 07 0|
1 110 !
- | I N
01 ‘1 oo [0 jroj]on
I b B |
R B ‘ |
|
u [ XX XX u | X XXX
! 1
[ oo, 4. - — =
10 Ll [ixgox 10 0] X IX
I |
| | | |
T 1

@ u b 79 0f 92
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o Observation: In general, F1 is not equal to F2 due to different
values chosen for don’t care cells

u 80 of 92
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Ai
A z Az -z AB | Z
—] 0|1 00 |0
110 B— 01 |0
10 |0
NOT gate AND gate 11 11
A z
A z A Z O— AB |z
0|0 B— 00 |1
1)1 01 |1
Buffer gate NAND gate i (1) ;
A z AB | Z A z ag |z
00 |0 St
B —7 01 |1 B 01 |1
10 |1
10 |1
OR gate 11 |1 XOR gate 11 lo
A — z
AB |z A z
O— o0 |1 e
B 2 o1 10 B 01 |0
10 |0
10 |0
NOR gate 11 lo XNOR gate 11 |1
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O

0

0

NAND and NOR gates are easier to implement (smaller area,
less power consumption, faster) than AND and OR gates

NAND and NOR Implementation

A set of logic gates are functionally complete if any boolean
function can be implemented by just these gates

AND, OR, NOT

AND, NOT

(X’y')’ = x+y ==> OR gate
OR, NOT

NAND

NOR

[ ] 82 of 92
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Logic Implementation with NAND/NOR

o all implementations represent the AND-Invert Invert-OR gate
same function .

o Function can be implemented with i Eye
NAND gates only

Procedure from K map x—|

o present the simplified function in sum yx: S
of product form (AND-OR) 2

o use De morgan’s theorem to represent “—|
the function in NAND-NAND form x|

Similar steps for NOR implementation y—| F=xyz+we

starting from product of sums form ’

. A z
Given F = xy’z + wx’ Do' - A@—Z
B— B

F = (ABy F=A+B' = (AB)

83 of 92
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Other Two-Level Implementations

= Wired Logic, Transistor-Transistor Logic (TTL)

o Wired logic: if outputs of two logic gates are shorted together
o TTL style implementation allows wired connection

+5V +5V
R R
Out
Out
Input X y
NOT gate NAND g;ate 7wi red ANIS gate

o Other two level implementations are AND-OR-INVERT and
OR-AND-INVERT

n
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Simplest Two-Level Expression

= Some definitions

o Implicant: a grouping of one or more K map cells

o Prime implicant: an implicant that is not a subset of another
implicant

o Essential prime implicant:  a prime implicant that covers at
least one minterm not covered by another prime implicant

= Example, f(w,x,y,z) = z (0,1,2,5,6,7,9,14) + d(13)

yz yz

w_ 00 01 11 10 w00, 01 11 10
1
_ I DR L
00 1|1 1 0 |1 | 1 My
L R T ve-r-
b A S IR R T
o1 101 i1 o1 EO 11
I - == —_—
; i —
I 11
1 X 1 11 X 1
I
-
10 N 10 1
\7_1

essential primeimplicants = prime implicants
Department of Electrical & Computer Engineering, University of Waterloo
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o Essential prime implicants: y'z, xyz’'

o Prime implicants: w'x'y’, w'X'z’, w'xz, w'xy, w'yz’
minterms covered

0 1 2 5 6 7 9 14

y'z(1,5,9,13) Vv Vv Vv

xyZ (6,14) Vv N4

wxy 01 | V| \V
v

w'x'z (0,2

w'xz (57) %

NN

w'xy (6,7)

NN

w'yz' (2,6) %

n
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= All minterms must be covered

o Essential prime imlicants must be included (*)
o Different combinations of prime implicants are:
B+C;orB+D;orA+C+E;orA+D+E

= B+ CorB + D are the simplest, hence the simplest function
implementation is

0 F=yz+Xxyz +wX'z' +WXzZoryz+xyz'+ wx'z' + wxy

Department of Electrical & Computer Engineering, University of Waterloo
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Tabulation (Quine-McCluskey) Method

= The map method of simplification is convenient if number of
variables does not exceed beyond 4 or 5

o Tabulation method is preferred for a function with large number
of variables

o for F = f(w,X,y,z) consider two adjacent minterms
leta=m4 + m5=wxyz’ + wxy'z = wxy’

or =0100 + 0101 =010-
o similarly, let b = m12 + m13 = wxy’'z’ + wxy’z = wxy’
or =1100 + 1101 =110-

o similarly, c=m4+m5+ml2+ml3=a+b
= WXy’ + WXy’ = Xy’
= 010- + 110-=-10-

[ ] 88 of 92
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o Adjacent minterms differ by a single bit in their binary represen-
tation

o Tabulation method consists of grouping minterms and systemat-
ically checking for single bit differences
Example, f(w,x,y,z) = 2(0,3,4,6,7,8,10,11,15) +d(5,9)

o Group minterms according to number of 1's in binary represen-
tation

o Each element of each section is compared with each element of
the section below it; all reductions are recorded in next column

o Mark terms that combine
o All unmarked terms are prime implicants
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X y z
0O O 0

4 0 1 0 O
8 1 0 O

3 0 0 1 1
5 0 1 0 1
6 0 1 1 O
9 1 0 0 1
101 0 1 O
7 0 1 1 1
1171 0 1 1
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0O 04 (4 4567 (1,2)
- 0,8 (8) 80910,11 (1,2)
A et e
8 45 (1) 3,7,11,15 (4,8)
- 46 (2)
3 89 (1)
5 810 (2)
T
9 37 (4
10 3,11 (8)
— 57 (2
7 67 (1)
11 9,11 (2)
- 10,11 (1)
(- J—
7,15 (8)
11,15 (4)
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Prime minterms covered

implicants 0 3 4 6 7 8 10 11 15
04 |V v

0,8 VvV Vv

45,6,7 Vv VoV

8,9,10,11 VOV
3,7,11,15 Vv Vv VoV

o F(wx\yz)=0,4+4,5,6,7+8,9,10,11 + 3,7,11,15
0-00 + 01-- + 10-- + --11

wy'z’ + wx + wx' +yz

o or F(w,x,y,z) =0,8 +4,5,6,7 + 8,9,10,11 + 3,7,11,15
-000 + 01-- + 10-- + --11
Xy'zZ'+ WX+ wx' +yz

n
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