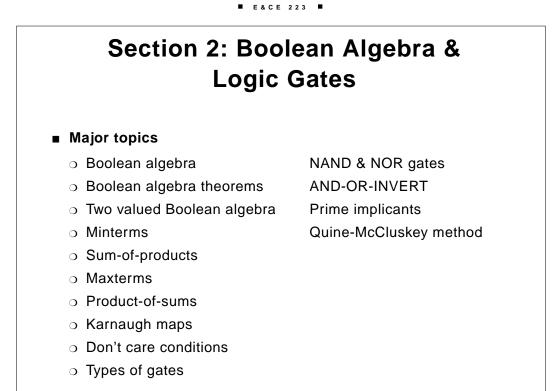
E&CE 223 Digital Circuits & Systems

Lecture Transparencies (Boolean Algebra & Logic Gates)

M. Sachdev

Department of Electrical & Computer Engineering, University of Waterloo



Switching & Boolean Algebra

- A branch of algebra used for describing and designing systems of two valued state variables
 - Used by Shannon (1938) to design relay circuits
 - Basic concepts were applied to logic by Boole (1854) hence is known as Boolean algebra
 - o Switching Algebra is two valued Boolean algebra

Boolean algebra

A set B of elements {a,b,c} together with two binary operators (.) and (+) , form a Boolean algebra iff the following **postulates** hold (Huntington 1904):

1. There is closure wrt both (.) and (+); i.e. for all $a, b \in B$, we obtain a unique $c \in B$

e.g.,
$$c = a + b$$
 and $c = a.b$

Department of Electrical & Computer Engineering, University of Waterloo

42 of 92

■ E&CE 223 ■

2. There exists in B identity elements {0,1} wrt (+) and (.) such that a + 0 = a and a.1 = a
3. (+) and (.) are commutative, i.e., a + b = b + a; a.b = b.a
4. (+) and (.) are distributive , i.e., a.(b+c) = (a.b) + (a.c); a+(b.c) = (a+b).(a+c)
5. For each element a ∈ B , there exists an element a' ∈ B such that a + a' = 1 and a.a' = 0
Note: a' is called complement of a [a' is also written as ā]
6. There exists at least two elements a, b ∈ B such that a ≠ b
○ In general, the number of elements may be 2ⁿ. Switching algebra and logic use the n = 1 case

■ E&CE 223 ■

Basic Theorems of Boolean Algebra

Duality principle

- Every algebraic identity deducible from the postulates of Boolean algebra remains valid if binary operators (.) and (+), and the identity elements 0 and 1 are interchanged throughout
- o Proof

Follows from the symmetric definition of Boolean algebra with respect to the two binary operators and respective identity elements, e.g.,

$$a + b = b + a;$$
 $a.b = b.a;$

$$a + a' = 1$$
 $a a' = 0$

Department of Electrical & Computer Engineering, University of Waterloo

44 of 92

Uniqueness theorems [not in the book]
 The identity elements are unique
 Proof
Let * be either of the binary operators, and assume it has two identity elements ${\rm e_1}$ and ${\rm e_2}$
Then for any $a \in B$, from Postulate 2 we have:
a*e ₁ = a
a*e ₂ = a
Now, let $a = e_2$ in the first equation, and $a = e_1$ in the second equation, yielding
$e_2 * e_1 = e_2$
$e_1 * e_2 = e_1$
From postulate 3 we have
$e_2^*e_1 = e_1^*e_2$
and hence e ₂ = e ₁
QED

■ Theorem 1(a): x + x = x x + x = (x + x).1by postulate 2 = (x + x)(x + x')by postuate 5 = x + xx'by postulate 4 by postulate 5 = x + 0= X ■ Theorem 1(b): x .x = x $\mathbf{x}.\mathbf{x} = \mathbf{x}.\mathbf{x} + \mathbf{0}$ by postulate 2 = x.x + x.x'by postuate 5 by postulate 4 = x(x + x')by postulate 5 = x.1 = X \circ Note: the theorem 1(b) is dual of theorem 1(a)

Department of Electrical & Computer Engineering, University of Waterloo

46 of 92

■ Theorem 2(a): x + 1 = 1	
x + 1 = 1.(x + 1)	by postulate 2
= (x + x').(x + 1)	by postuate 5
= x + x'.1	by postulate 4
= x + x'	by postulate 5
= 1	
■ Theorem 2(b): x .0 = 0	
o by duality	
■ Theorem 3: (x')' = x	
1. Complement of x' is (x')'	
2. From postulate 5 which of	defines the complement, we have
x' + x = 1 and $x'.x = 0$	
therefore x is the compleme	ent of x'

Theorem 4 (associative) x + (y + z) = (x + y) + zand x.(y.z) = (x.y).zTheorem 5 (De Morgan's) (x + y)' = x'.y'(x.y)' = x' + y'and • The theorems involving 2 or 3 variables may be proven alebraically from postulates and theorems already proven ■ Theorem 6(a): x + x.y = x (absorption) x + x.y = x.1 + x.yby postulate 2 = x.(1 + y)by postuate 4 = x.(y + 1)by postulate 3 = x.1 by postulate 5 = X • Theorem 6(b): x(x + y) = x by duality

Department of Electrical & Computer Engineering, University of Waterloo

48 of 92

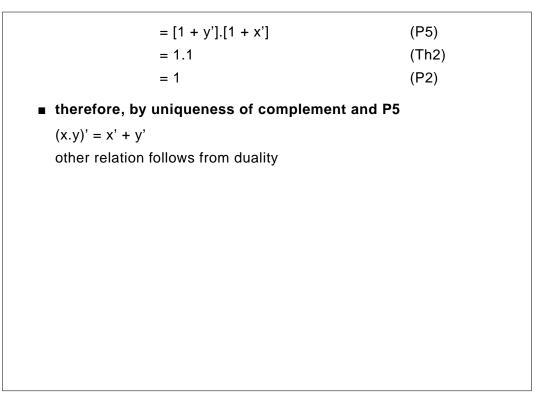
■ E&CE 223 ■

■ Theorem 4 o Proof x + (y + z) = (x + y) + zStep 1: x + x.(y + z)= X (T6) = x.(x + z)(Th. 6)= (x + x.y).(x + z)(T6) = x + (x.y).z(P4) Step 2: x' + x.(y.z)= (x' + x).(x' + y.z)(P4) = 1.(x' + y.z)(P5) = x' + y.z(P2) = (x' + y).(x' + z)(P4) = [1.(x' + y)].(x' + z)(P2) = [(x' + x).(x' + y)].(x' + z) (P5) = [x' + x.y].(x' + z)(P4) = x' + (x.y).z

Take (.) operation of the left hand side terms above Step 3: [x + x.(y + z)].[x' + x.(y.z]] = [x + (x.y).z].[x' + (x.y).z]Then (P4) xx' + x.(y.z) = xx' + (x.y).z0 + x.(y.z)= 0 + (x.y).z(P5) x.(y.z) = (x.y).zQED (P2) ■ Theorem 5 (x + y)' = x'.y'and (x.y)' = x' + y'1. (xy)(x'+y') = (xy)x' + (xy)y'(P4) = (xx')y + x(yy')(Th4 & P3) = 0.y + x.0(P5) (Th2) = 0 + 0= 0(P2) 2. (x+y)+(x'+y') = [x+(x'+y')].[y+(x'+y')](P4) = [(x+x') + y'].[(y+y') + x'](Th4 & P3)

Department of Electrical & Computer Engineering, University of Waterloo

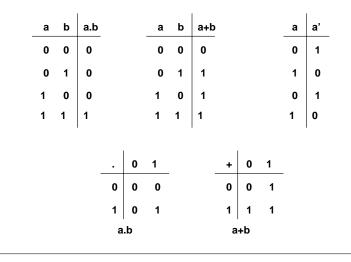
50 of 92



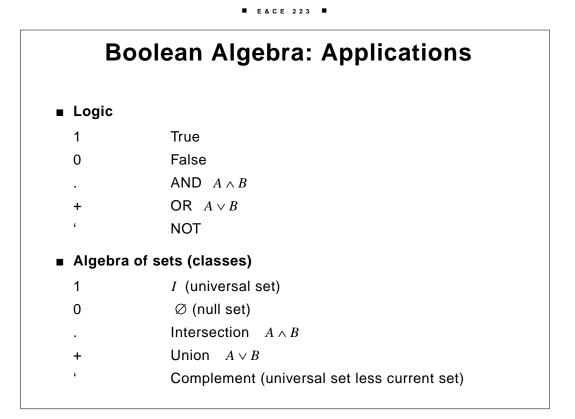
■ E&CE 223 ■

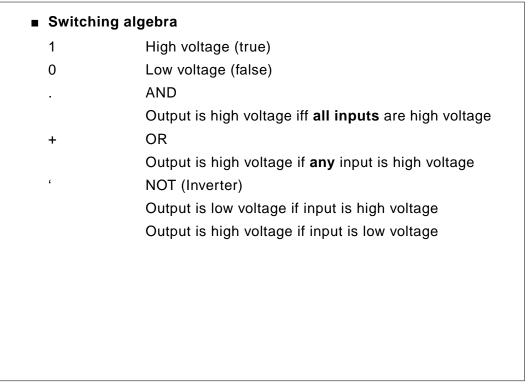
Two Valued Boolean Algebra

- B = {0,1}
- Definition of (.) and (+) operations and of complements

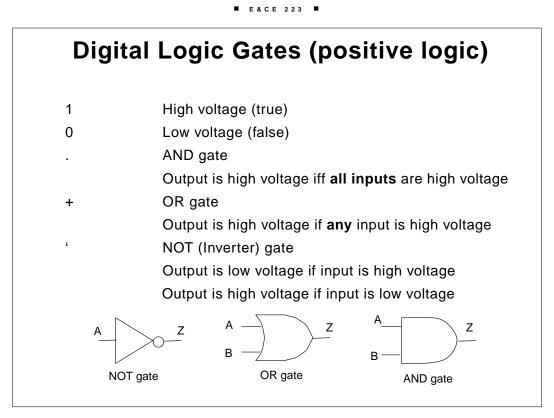


Department of Electrical & Computer Engineering, University of Waterloo

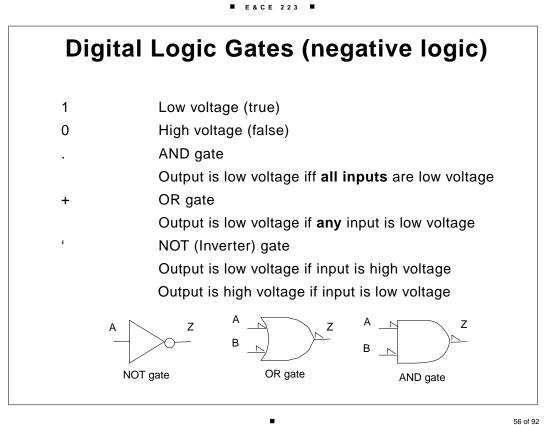




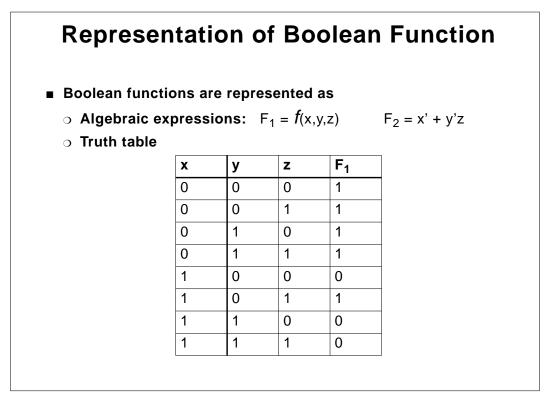
54 of 92



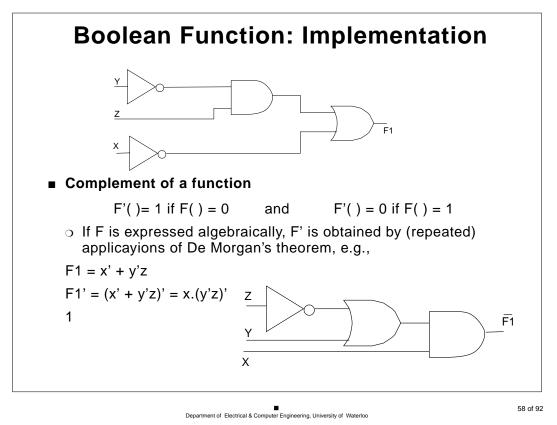
Department of Electrical & Computer Engineering, University of Waterloo

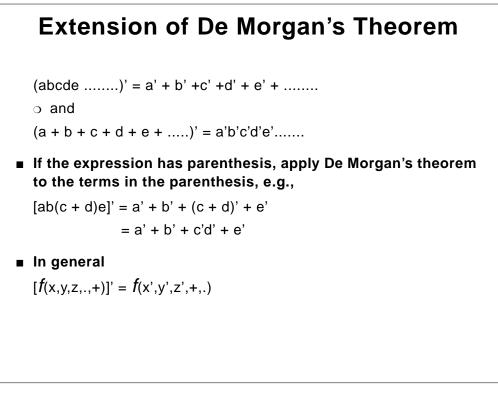


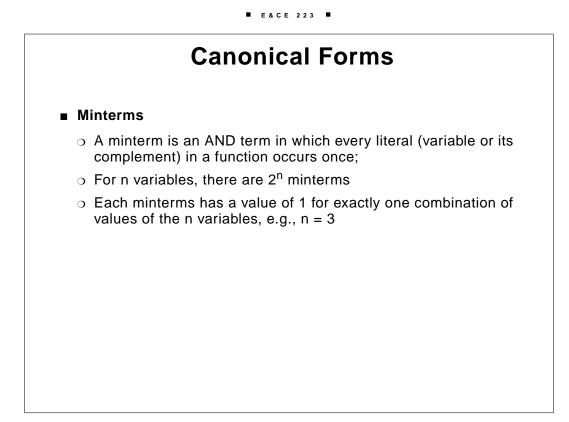
E&CE 223 🔳



■ E&CE 223 ■







60 of 92

■ E&CE 223 ■

x y z	Corresponding minterm	designation
0 0 0	x'y'z'	m ₀
0 0 1	x'y'z	m ₁
0 1 0	x'yz'	m ₂
011	x'yz	m ₃
1 0 0	xy'z'	m ₄
101	xy'z	m ₅
1 1 0	xyz'	m ₆
1 1 1	хуz	m ₇

• One method of writing a Boolean function is in the canonical minterm form (canonical sum of products form), e.g.

F = x'y'z + xy'z + xyz' $= m_1 + m_5 + m_6$

$$= m_1 + m_5 + m_6$$

$$= \sum (1, 5, 6)$$

x y z	F1	Correspond- ing minterm
000	1	m ₀
0 0 1	1	m ₁
0 1 0	1	m ₂
0 1 1	1	m ₃
1 0 0	0	
101	1	m ₅
1 1 0	0	
1 1 1	0	
Ũ	1, 2, 3, 5) ₁ + m ₂ + m ₃ + m ₅ x'y'z + x'yz' + x'yz + xy	'Z

62 of 92

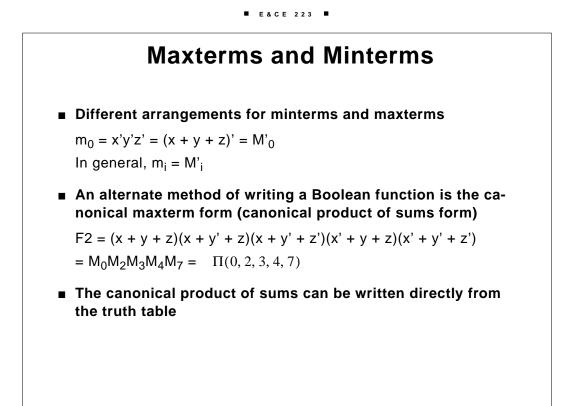
x	у	Z	F1	Correspond- ing minterm
0	0	0	1	m ₀
0	0	1	1	m ₁
0	1	0	1	m ₂
0	1	1	1	m ₃
1	0	0	0	
1	0	1	1	m ₅
1	1	0	0	
1	1	1	0	

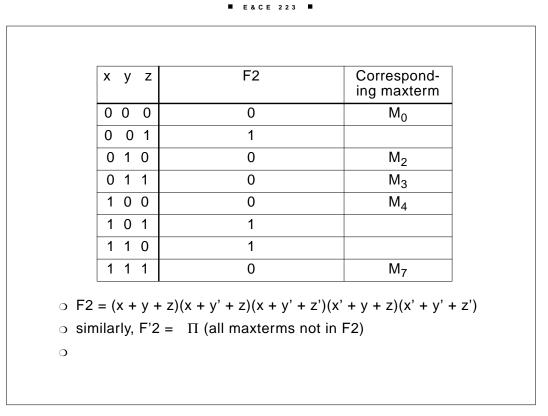
Maxterms

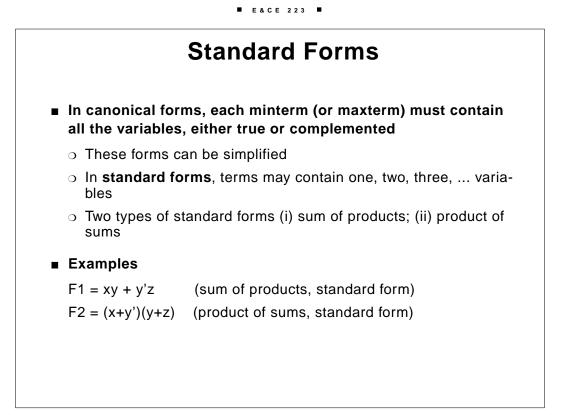
- A maxterm is an OR term in which every literal (variable or its complement) in a function occurs once.
 - Each maxterm has a value of 0 for one combination of values of the n variables

x y z	Corresponding minterm	designation
000	x + y + z	M ₀
0 0 1	x + y + z'	M ₁
0 1 0	x + y' + z	M ₂
0 1 1	x + y' + z'	M ₃
1 0 0	x' + y + z	M ₄
101	x' + y + z'	M ₅
1 1 0	x' + y' + z	M ₆
1 1 1	x' + y' + z'	M ₇
1 1 0	x' + y' + z	M ₆

Department of Electrical & Computer Engineering, University of Waterloo

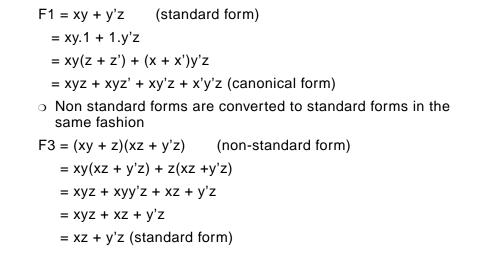




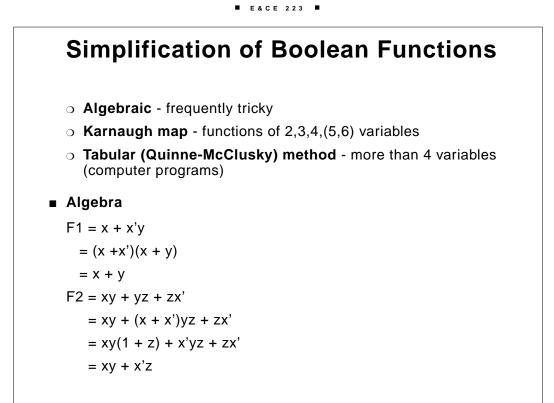


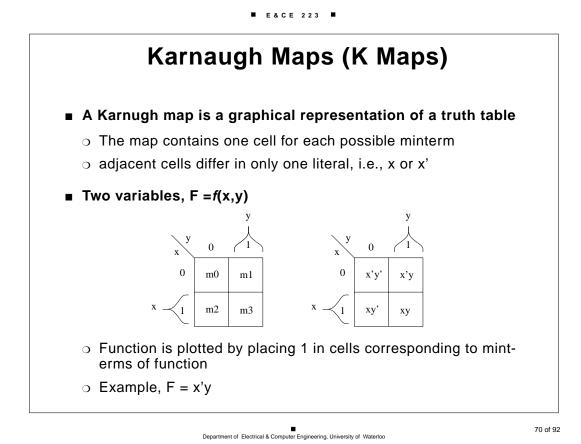
Canonical vs Standard forms

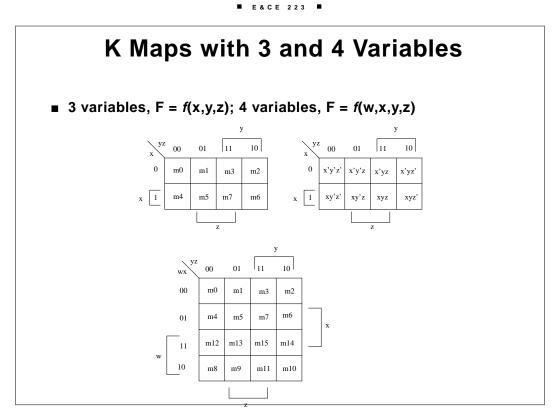
• Standard forms are converted into canonical forms by use of identity elements, complement, and distributive postulates

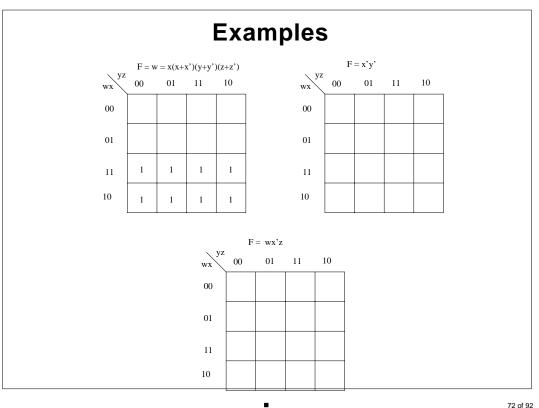


Department of Electrical & Computer Engineering, University of Waterloo





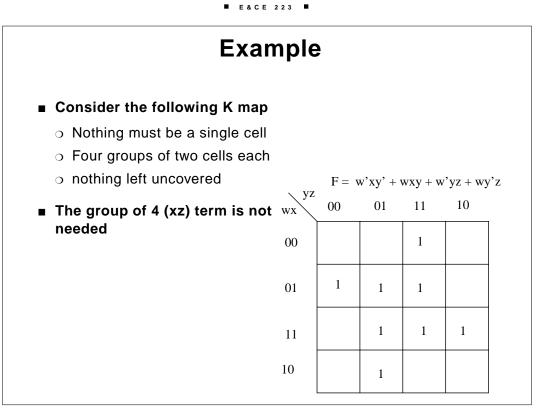


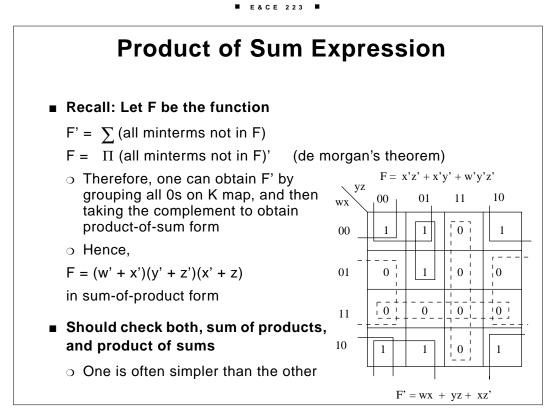


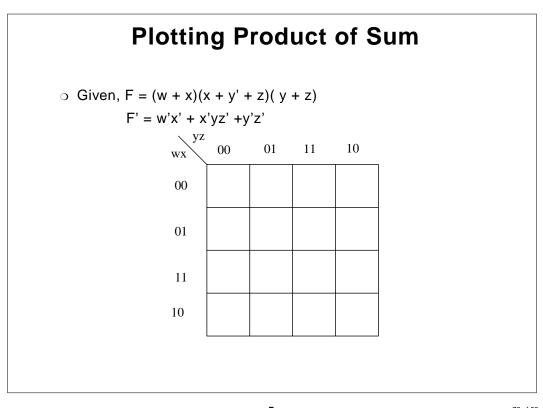
E&CE 223

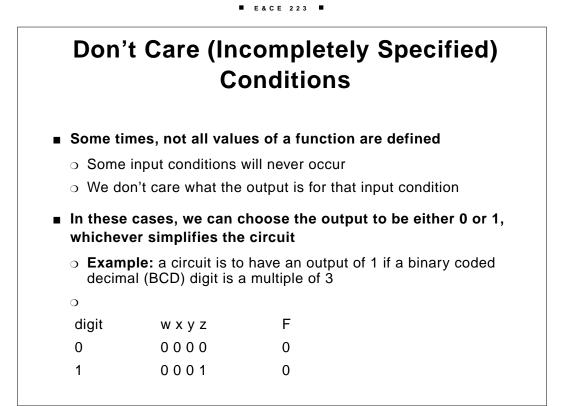
Department of Electrical & Computer Engineering, University of Waterloo

- To write simplified function, find maximum size groups (minimum literals) that *cover all 1s* in map
 - o 8 cells --> single literal
 - o 4 cells --> two literals
 - o 2 cells --> three literals
 - o 1 cell --> four literals
- Guidelines for logic synthesis
 - Fewer groups: fewer AND gates and fewer input to the OR gate
 - o Fewer literals (larger group): fewer inputs to AND gate
- Synthesis (design) objectives
 - Smallest number of logic gates
 - Number of inputs to logic gate





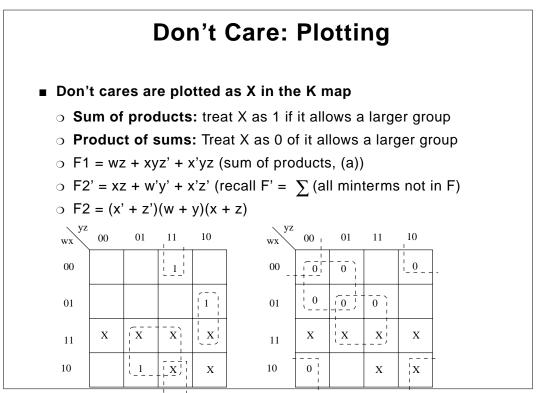




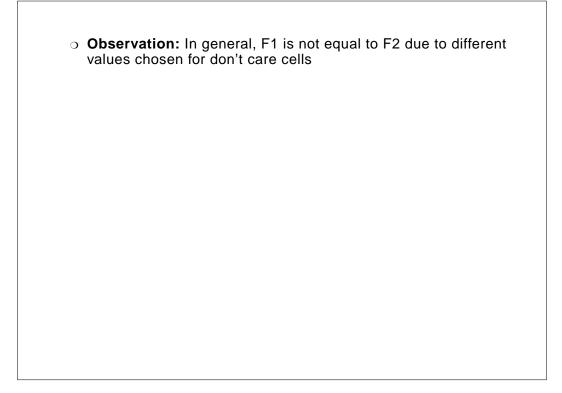
2	0010	0	
3	0011	1	
4	0100	0	
5	0101	0	
6	0110	1	
7	0111	0	
8	1000	0	
9	1001	1	
	1010	-	don't care condition
	1011	-	,,
	1100	-	"
	1101	-	"
	1110	-	"
	1111	-	,,

E&CE 223 🔳

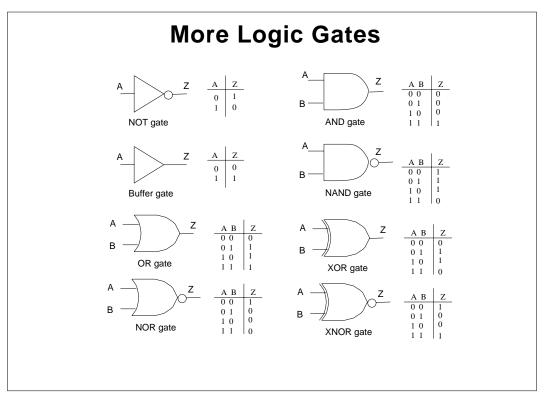
78 of 92

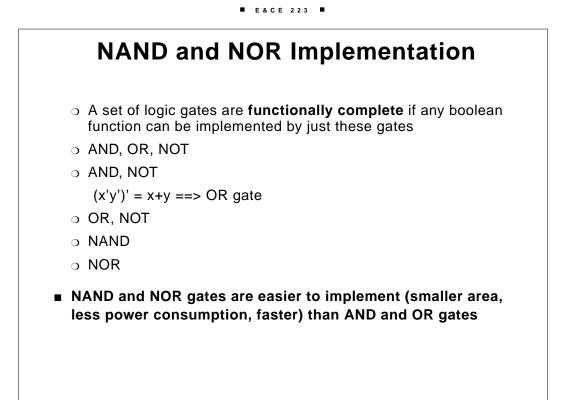


(a)
Bepartment of Electrical & Computer Engineering, University of Waterloo

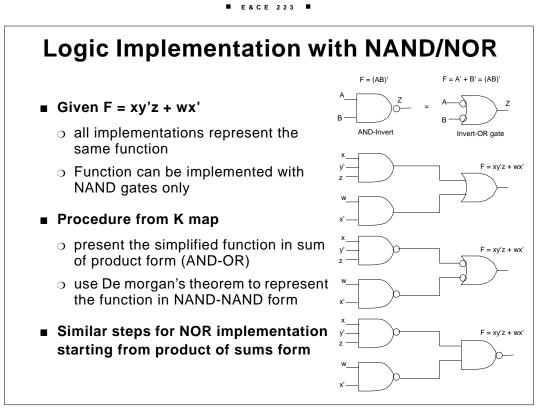


■ E&CE 223 ■

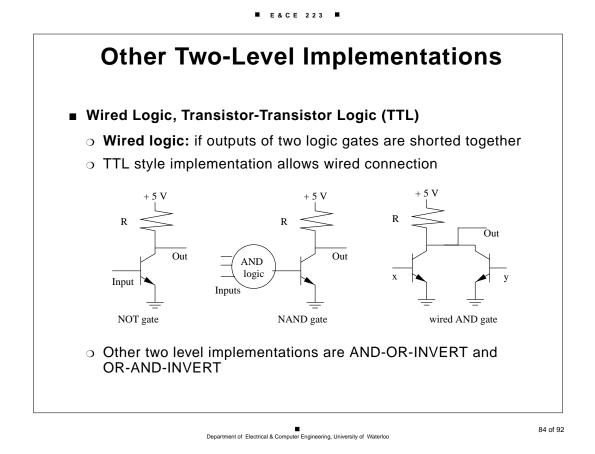


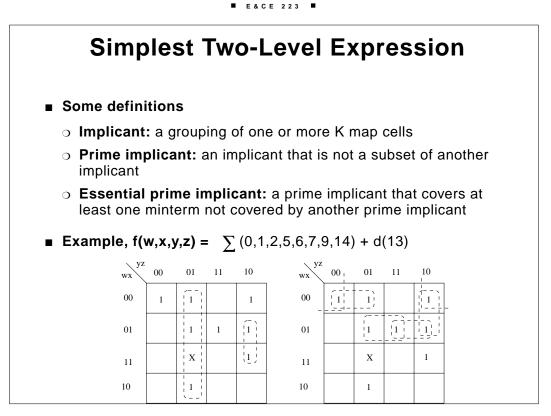


82 of 92

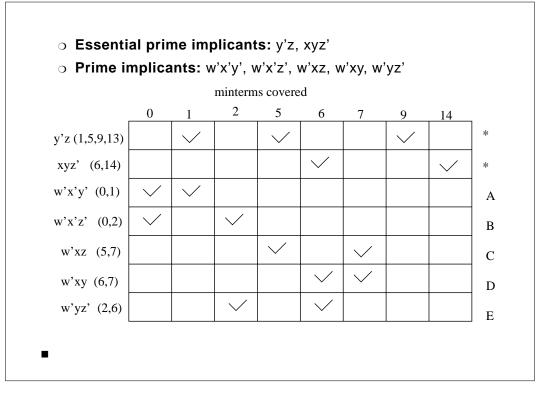


Department of Electrical & Computer Engineering, University of Waterloo

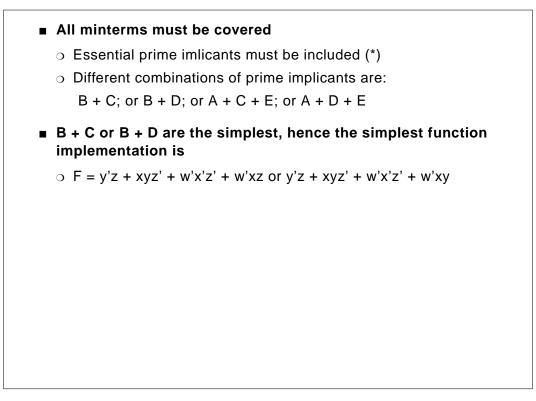


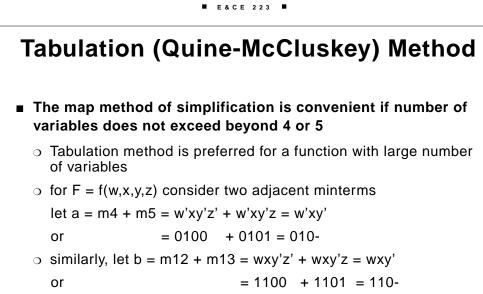


essential prime implicants Department of Electrical & Computer Engineering, University of Waterloo

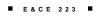


86 of 92



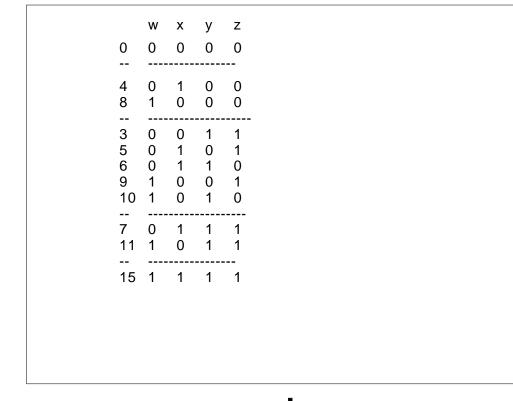


- \circ similarly, c = m4 + m5 + m12 + m13 = a + b
 - = w'xy' + wxy' = xy'



- Adjacent minterms differ by a single bit in their binary representation
- Tabulation method consists of grouping minterms and systematically checking for single bit differences
- **Example**, $f(w,x,y,z) = \sum (0,3,4,6,7,8,10,11,15) + d(5,9)$
 - Group minterms according to number of 1's in binary representation
 - Each element of each section is compared with each element of the section below it; all reductions are recorded in next column
 - o Mark terms that combine
 - o All unmarked terms are prime implicants

■ E&CE 223 ■



Department of Electrical & Computer Engineering, University of Waterloo

90 of 92

0,4 0,8 4,5 4,6 8,9 8,10 	(4) (8) (1) (2) (1) (2) (2) (4)	4,5,6,7 8,9,10,11 	(1,2) (1,2) (4,8)				
4,6 8,9 8,10	(2) (1) (2)	3,7,11,15	(4,8)				
8,10	(2)						
3.7	(4)						
•,•	(')						
3,11	(8)						
5,7	(2)						
6,7	(1)						
9,11	(2)						
10,11	(1)						
 7 15	 (8)						
	5,7 6,7 9,11 10,11 7,15	5,7 (2) 6,7 (1)	5,7 (2) 5,7 (1) 9,11 (2) 10,11 (1) 7,15 (8)	5,7 (2) 5,7 (1) 9,11 (2) 10,11 (1) 7,15 (8)			

