
E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 40 of 92

E&CE 223
Digital Circuits & Systems

Lecture Transparencies
(Boolean Algebra & Logic Gates)

 M. Sachdev

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 41 of 92

Section 2: Boolean Algebra &
Logic Gates

■ Major topics

❍ Boolean algebra NAND & NOR gates

❍ Boolean algebra theorems AND-OR-INVERT

❍ Two valued Boolean algebra Prime implicants

❍ Minterms Quine-McCluskey method

❍ Sum-of-products

❍ Maxterms

❍ Product-of-sums

❍ Karnaugh maps

❍ Don’t care conditions

❍ Types of gates

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 42 of 92

Switching & Boolean Algebra

■ A branch of algebra used for describing and designing sys-
tems of two valued state variables

❍ Used by Shannon (1938) to design relay circuits

❍ Basic concepts were applied to logic by Boole (1854) hence is
known as Boolean algebra

❍ Switching Algebra is two valued Boolean algebra

■ Boolean algebra

❍ A set B of elements {a,b,c} together with two binary opera-
tors (.) and (+) , form a Boolean algebra iff the following postu-
lates hold (Huntington 1904):

1. There is closure wrt both (.) and (+); i.e. for all , we ob-
tain a unique

e.g., c = a + b and c = a.b

a b B∈,
c B∈

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 43 of 92

2. There exists in B identity elements {0,1} wrt (+) and (.) such that

a + 0 = a and a.1 = a

3. (+) and (.) are commutative, i.e.,

a + b = b + a; a.b = b.a

4. (+) and (.) are distributive , i.e.,

a.(b+c) = (a.b) + (a.c); a+(b.c) = (a+b).(a+c)

5. For each element , there exists an element such
that

a + a’ = 1 and a.a’ = 0

Note: a’ is called complement of a [a’ is also written as a]

6. There exists at least two elements such that

❍ In general, the number of elements may be 2n. Switching alge-
bra and logic use the n = 1 case

a B∈ a′ B∈

a b B∈, a b≠

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 44 of 92

Basic Theorems of Boolean Algebra

■ Duality principle

❍ Every algebraic identity deducible from the postulates of Bool-
ean algebra remains valid if binary operators (.) and (+), and the
identity elements 0 and 1 are interchanged throughout

❍ Proof

Follows from the symmetric definition of Boolean algebra with re-
spect to the two binary operators and respective identity elements,
e.g.,

a + b = b + a; a.b = b.a;

a + a’ = 1 a.a’ = 0

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 45 of 92

■ Uniqueness theorems [not in the book]

❍ The identity elements are unique

❍ Proof

Let * be either of the binary operators, and assume it has two iden-
tity elements e1 and e2

Then for any , from Postulate 2 we have:

a*e1 = a

a*e2 = a

Now, let a = e2 in the first equation, and a = e1 in the second equa-
tion, yielding

e2*e1 = e2

e1*e2 = e1

From postulate 3 we have

e2*e1 = e1*e2

and hence e2 = e1

QED

a B∈

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 46 of 92

■ Theorem 1(a): x + x = x

x + x = (x + x).1 by postulate 2

= (x + x)(x + x’) by postuate 5

= x + xx’ by postulate 4

= x + 0 by postulate 5

= x

■ Theorem 1(b): x .x = x

x.x = x.x + 0 by postulate 2

= x.x + x.x’ by postuate 5

= x(x + x’) by postulate 4

= x.1 by postulate 5

= x

❍ Note: the theorem 1(b) is dual of theorem 1(a)

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 47 of 92

■ Theorem 2(a): x + 1 = 1

x + 1 = 1.(x + 1) by postulate 2

= (x + x’).(x + 1) by postuate 5

= x + x’.1 by postulate 4

= x + x’ by postulate 5

= 1

■ Theorem 2(b): x .0 = 0

❍ by duality

■ Theorem 3: (x’)’ = x

1. Complement of x’ is (x’)’

2. From postulate 5 which defines the complement, we have

x’ + x = 1 and x’.x = 0

therefore x is the complement of x’

Since the complement is unique, (x’)’ = x

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 48 of 92

■ Theorem 4 (associative)

x + (y + z) = (x + y) + z and x.(y.z) = (x.y).z

■ Theorem 5 (De Morgan’s)

(x + y)’ = x’.y’ and (x.y)’ = x’ + y’

■ The theorems involving 2 or 3 variables may be proven alebra-
ically from postulates and theorems already proven

■ Theorem 6(a): x + x.y = x (absorption)

x + x.y= x.1 + x.y by postulate 2

= x.(1 + y) by postuate 4

= x.(y + 1) by postulate 3

= x.1 by postulate 5

= x

■ Theorem 6(b): x.(x + y) = x by duality

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 49 of 92

■ Theorem 4

❍ Proof x + (y + z) = (x + y) + z

Step 1: x + x.(y + z) = x (T6)

= x.(x + z)(Th. 6)

= (x + x.y).(x + z) (T6)

= x + (x.y).z (P4)

Step 2: x’+ x.(y.z) = (x’ + x).(x’ + y.z) (P4)

= 1.(x’ + y.z) (P5)

= x’ + y.z (P2)

= (x’ + y).(x’ + z) (P4)

= [1.(x’ + y)].(x’ + z) (P2)

= [(x’ + x).(x’ + y)].(x’ + z) (P5)

= [x’ +x.y].(x’ + z) (P4)

= x’ + (x.y).z

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 50 of 92

Step 3: Take (.) operation of the left hand side terms above

[x + x.(y + z)].[x’+ x.(y.z] = [x + (x.y).z].[x’ + (x.y).z]

Then

xx’ + x.(y.z) = xx’ + (x.y).z (P4)

0 + x.(y.z) = 0 +(x.y).z (P5)

x.(y.z) = (x.y).z QED (P2)

■ Theorem 5

(x + y)’ = x’.y’ and (x.y)’ = x’ + y’

1. (xy)(x’+y’) = (xy)x’ + (xy)y’ (P4)

= (xx’)y + x(yy’) (Th4 & P3)

= 0.y + x.0 (P5)

= 0 + 0 (Th2)

= 0 (P2)

2. (x+y)+(x’+y’) = [x+(x’+y’)].[y+(x’+y’)] (P4)

= [(x+x’) + y’].[(y+y’) + x’] (Th4 & P3)

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 51 of 92

= [1 + y’].[1 + x’] (P5)

= 1.1 (Th2)

= 1 (P2)

■ therefore, by uniqueness of complement and P5

(x.y)’ = x’ + y’

other relation follows from duality

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 52 of 92

Two Valued Boolean Algebra

■ B = {0,1}

■ Definition of (.) and (+) operations and of complements

ba a.b

0 0

0

0

1

1

1 1

0

0

0

1

0 0 0

. 0 1

1 10

a.b

ba

0 0

0

0

1

1

1 1

0

1

0

0

1

1

0

a+b

1

1

a’

1

1

0

a

0 0

0 1

1 1

+

1

1

a+b

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 53 of 92

Boolean Algebra: Applications

■ Logic

1 True

0 False

. AND

+ OR

‘ NOT

■ Algebra of sets (classes)

1 (universal set)

0 (null set)

. Intersection

+ Union

‘ Complement (universal set less current set)

A B∧
A B∨

I

∅
A B∧

A B∨

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 54 of 92

■ Switching algebra

1 High voltage (true)

0 Low voltage (false)

. AND

Output is high voltage iff all inputs are high voltage

+ OR

Output is high voltage if any input is high voltage

‘ NOT (Inverter)

Output is low voltage if input is high voltage

Output is high voltage if input is low voltage

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 55 of 92

Digital Logic Gates (positive logic)

1 High voltage (true)

0 Low voltage (false)

. AND gate

Output is high voltage iff all inputs are high voltage

+ OR gate

Output is high voltage if any input is high voltage

‘ NOT (Inverter) gate

Output is low voltage if input is high voltage

Output is high voltage if input is low voltage

A

B

Z

AND gate

A

B

ZA Z

NOT gate OR gate

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 56 of 92

Digital Logic Gates (negative logic)

1 Low voltage (true)

0 High voltage (false)

. AND gate

Output is low voltage iff all inputs are low voltage

+ OR gate

Output is low voltage if any input is low voltage

‘ NOT (Inverter) gate

Output is low voltage if input is high voltage

Output is high voltage if input is low voltage

NOT gate OR gate AND gate

A Z
A

B

Z A

B

Z

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 57 of 92

Representation of Boolean Function

■ Boolean functions are represented as

❍ Algebraic expressions: F1 = f(x,y,z) F2 = x’ + y’z

❍ Truth table

x y z F 1

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 58 of 92

Boolean Function: Implementation

■ Complement of a function

F’()= 1 if F() = 0 and F’() = 0 if F() = 1

❍ If F is expressed algebraically, F’ is obtained by (repeated)
applicayions of De Morgan’s theorem, e.g.,

F1 = x’ + y’z

F1’ = (x’ + y’z)’ = x.(y’z)’

1

Z

Y

F1

X

X

Z

Y
F1

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 59 of 92

Extension of De Morgan’s Theorem

(abcde)’ = a’ + b’ +c’ +d’ + e’ +

❍ and

(a + b + c + d + e +)’ = a’b’c’d’e’.......

■ If the expression has parenthesis, apply De Morgan’s theorem
to the terms in the parenthesis, e.g.,

[ab(c + d)e]’ = a’ + b’ + (c + d)’ + e’

= a’ + b’ + c’d’ + e’

■ In general

[f(x,y,z,.,+)]’ = f(x’,y’,z’,+,.)

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 60 of 92

Canonical Forms

■ Minterms

❍ A minterm is an AND term in which every literal (variable or its
complement) in a function occurs once;

❍ For n variables, there are 2n minterms

❍ Each minterms has a value of 1 for exactly one combination of
values of the n variables, e.g., n = 3

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 61 of 92

■ One method of writing a Boolean function is in the canonical
minterm form (canonical sum of products form), e.g.

F = x’y’z + xy’z + xyz’
= m1 + m5 + m6

=

x y z Corresponding minterm designation

0 0 0 x’y’z’ m0

0 0 1 x’y’z m1

0 1 0 x’yz’ m2

0 1 1 x’yz m3

1 0 0 xy’z’ m4

1 0 1 xy’z m5

1 1 0 xyz’ m6

1 1 1 xyz m7

1 5 6, ,()∑

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 62 of 92

■ The canonical sum of products of F can be written directly
from the truth table

F1 =

= m0 + m1 + m2 + m3 + m5

= x’y’z’ + x’y’z + x’yz’ + x’yz + xy’z

x y z F1 Correspond-
ing minterm

0 0 0 1 m0

0 0 1 1 m1

0 1 0 1 m2

0 1 1 1 m3

1 0 0 0

1 0 1 1 m5

1 1 0 0

1 1 1 0

0 1 2 3 5, , , ,()∑

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 63 of 92

■ The canonical sum of products of F’ can also be written direct-
ly from the truth table

F’ = (all minterms not in F)

F’1 = (from previous example) = m4 + m6 + m7

= xy’z’ + xyz’ + xyz

x y z F1 Correspond-
ing minterm

0 0 0 1 m0

0 0 1 1 m1

0 1 0 1 m2

0 1 1 1 m3

1 0 0 0

1 0 1 1 m5

1 1 0 0

1 1 1 0

∑

4 6 7, ,()∑

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 64 of 92

Maxterms

■ A maxterm is an OR term in which every literal (variable or its
complement) in a function occurs once.

❍ Each maxterm has a value of 0 for one combination of values of
the n variables

x y z Corresponding minterm designation

0 0 0 x + y + z M0

0 0 1 x + y + z’ M1

0 1 0 x + y’ + z M2

0 1 1 x + y’ + z’ M3

1 0 0 x’ + y + z M4

1 0 1 x’ + y + z’ M5

1 1 0 x’ + y’ + z M6

1 1 1 x’ + y’ + z’ M7

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 65 of 92

Maxterms and Minterms

■ Different arrangements for minterms and maxterms

m0 = x’y’z’ = (x + y + z)’ = M’0
In general, mi = M’i

■ An alternate method of writing a Boolean function is the ca-
nonical maxterm form (canonical product of sums form)

F2 = (x + y + z)(x + y’ + z)(x + y’ + z’)(x’ + y + z)(x’ + y’ + z’)

= M0M2M3M4M7 =

■ The canonical product of sums can be written directly from
the truth table

Π 0 2 3 4 7, , , ,()

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 66 of 92

❍ F2 = (x + y + z)(x + y’ + z)(x + y’ + z’)(x’ + y + z)(x’ + y’ + z’)

❍ similarly, F’2 = (all maxterms not in F2)

❍

x y z F2 Correspond-
ing maxterm

0 0 0 0 M0

0 0 1 1

0 1 0 0 M2

0 1 1 0 M3

1 0 0 0 M4

1 0 1 1

1 1 0 1

1 1 1 0 M7

Π

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 67 of 92

Standard Forms

■ In canonical forms, each minterm (or maxterm) must contain
all the variables, either true or complemented

❍ These forms can be simplified

❍ In standard forms , terms may contain one, two, three, ... varia-
bles

❍ Two types of standard forms (i) sum of products; (ii) product of
sums

■ Examples

F1 = xy + y’z (sum of products, standard form)

F2 = (x+y’)(y+z) (product of sums, standard form)

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 68 of 92

Canonical vs Standard forms

❍ Standard forms are converted into canonical forms by use of
identity elements, complement, and distributive postulates

F1 = xy + y’z (standard form)

= xy.1 + 1.y’z

= xy(z + z’) + (x + x’)y’z

= xyz + xyz’ + xy’z + x’y’z (canonical form)

❍ Non standard forms are converted to standard forms in the
same fashion

F3 = (xy + z)(xz + y’z) (non-standard form)

= xy(xz + y’z) + z(xz +y’z)

= xyz + xyy’z + xz + y’z

= xyz + xz + y’z

= xz + y’z (standard form)

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 69 of 92

Simplification of Boolean Functions

❍ Algebraic - frequently tricky

❍ Karnaugh map - functions of 2,3,4,(5,6) variables

❍ Tabular (Quinne-McClusky) method - more than 4 variables
(computer programs)

■ Algebra

F1 = x + x’y

= (x +x’)(x + y)

= x + y

F2 = xy + yz + zx’

= xy + (x + x’)yz + zx’

= xy(1 + z) + x’yz + zx’

= xy + x’z

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 70 of 92

Karnaugh Maps (K Maps)

■ A Karnugh map is a graphical representation of a truth table

❍ The map contains one cell for each possible minterm

❍ adjacent cells differ in only one literal, i.e., x or x’

■ Two variables, F = f(x,y)

❍ Function is plotted by placing 1 in cells corresponding to mint-
erms of function

❍ Example, F = x’y

x
y

0 1

m0 m1

m3m2

0

1

y

x

x
y

0 1

0

1

y

x

x’y’ x’y

xy’ xy

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 71 of 92

K Maps with 3 and 4 Variables

■ 3 variables, F = f(x,y,z); 4 variables, F = f(w,x,y,z)

x

0

1

yz
11 1000 01

x

y

z

xyz xyz’

x’y’z’ x’y’z x’yz x’yz’

xy’z’ xy’z

yz
wx 00 01 11 10

00

01

11

10

x

m0 m10

1

m3 m2

yz
11 1000 01

x

y

z

m4 m5 m6m7

m0 m1 m3 m2

m4 m5 m7 m6
x

y

z

w

m13 m15 m14

m8 m9 m11 m10

m12

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 72 of 92

Examples

yz
wx 00 01 11 10

00

01

11

10

F = x’y’
yz

wx 00 01 11 10

00

01

11

10

1 1 1 1

1111

F = w = x(x+x’)(y+y’)(z+z’)

yz
wx 00 01 11 10

00

01

11

10

F = wx’z

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 73 of 92

K Map Boolean Funct. Simplification

■ To write simplified function, find maximum size groups (mini-
mum literals) that cover all 1s in map

❍ 8 cells --> single literal

❍ 4 cells --> two literals

❍ 2 cells --> three literals

❍ 1 cell --> four literals

■ Guidelines for logic synthesis

❍ Fewer groups: fewer AND gates and fewer input to the OR gate

❍ Fewer literals (larger group): fewer inputs to AND gate

■ Synthesis (design) objectives

❍ Smallest number of logic gates

❍ Number of inputs to logic gate

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 74 of 92

Example

■ Consider the following K map

❍ Nothing must be a single cell

❍ Four groups of two cells each

❍ nothing left uncovered

■ The group of 4 (xz) term is not
needed

yz
wx 00 01 11 10

00

01

11

10

1 1

1

1 11

1

1

F = w’xy’ + wxy + w’yz + wy’z

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 75 of 92

Product of Sum Expression

■ Recall: Let F be the function

F’ = (all minterms not in F)

F = (all minterms not in F)’ (de morgan’s theorem)

❍ Therefore, one can obtain F’ by
grouping all 0s on K map, and then
taking the complement to obtain
product-of-sum form

❍ Hence,

F = (w’ + x’)(y’ + z’)(x’ + z)

in sum-of-product form

■ Should check both, sum of products,
and product of sums

❍ One is often simpler than the other

∑
Π

yz
wx 00 01 11 10

00

01

11

10 1

1

1 1 10

0 0

1 0

0 0 0

1

0

0

F = x’z’ + x’y’ + w’y’z’

F’ = wx + yz + xz’

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 76 of 92

Plotting Product of Sum

❍ Given, F = (w + x)(x + y’ + z)(y + z)

F’ = w’x’ + x’yz’ +y’z’
yz

wx 00 01 11 10

00

01

11

10

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 77 of 92

Don’t Care (Incompletely Specified)
Conditions

■ Some times, not all values of a function are defined

❍ Some input conditions will never occur

❍ We don’t care what the output is for that input condition

■ In these cases, we can choose the output to be either 0 or 1,
whichever simplifies the circuit

❍ Example: a circuit is to have an output of 1 if a binary coded
decimal (BCD) digit is a multiple of 3

❍

digit w x y z F

0 0 0 0 0 0

1 0 0 0 1 0

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 78 of 92

2 0 0 1 0 0

3 0 0 1 1 1

4 0 1 0 0 0

5 0 1 0 1 0

6 0 1 1 0 1

7 0 1 1 1 0

8 1 0 0 0 0

9 1 0 0 1 1

1 0 1 0 - don’t care condition

1 0 1 1 - ,,

1 1 0 0 - ,,

1 1 0 1 - ,,

1 1 1 0 - ,,

1 1 1 1 - ,,

❍ F = (3,6,9) + d(10,11,12,13,14,15)∑

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 79 of 92

Don’t Care: Plotting

■ Don’t cares are plotted as X in the K map

❍ Sum of products: treat X as 1 if it allows a larger group

❍ Product of sums: Treat X as 0 of it allows a larger group

❍ F1 = wz + xyz’ + x’yz (sum of products, (a))

❍ F2’ = xz + w’y’ + x’z’ (recall F’ = (all minterms not in F)

❍ F2 = (x’ + z’)(w + y)(x + z)
∑

yz
wx 00 01 11 10

00

01

11

10 X1 X

XXXX

1

1

yz
wx 00 01 11 10

00

01

11

10 X X

XXXX

(b)(a)

0 0 0

000

0

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 80 of 92

❍ Observation: In general, F1 is not equal to F2 due to different
values chosen for don’t care cells

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 81 of 92

More Logic Gates

A Z

0
1

1
0

A

B

Z

AND gate

A B
0 0
0 1
1 0
1 1

Z
0
1
1
1

A

B

Z

OR gate

A

B

Z

NOR gate

A B
0 0
0 1
1 0
1 1

Z
1
0
0
0

A Z A Z

0
1

0
1

A Z

NOT gate

Buffer gate

A

B

Z

A

B

Z A B
0 0
0 1
1 0
1 1

Z
1
0
0

A B
0 0
0 1
1 0
1 1

Z
0
1
1

A B
0 0
0 1
1 0
1 1

Z

0

A B
0 0
0 1
1 0
1 1

Z
0

1

0
0

A

B

Z

NAND gate

1
1
1

XOR gate

XNOR gate

0

1

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 82 of 92

NAND and NOR Implementation

❍ A set of logic gates are functionally complete if any boolean
function can be implemented by just these gates

❍ AND, OR, NOT

❍ AND, NOT

(x’y’)’ = x+y ==> OR gate

❍ OR, NOT

❍ NAND

❍ NOR

■ NAND and NOR gates are easier to implement (smaller area,
less power consumption, faster) than AND and OR gates

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 83 of 92

Logic Implementation with NAND/NOR

■ Given F = xy’z + wx’

❍ all implementations represent the
same function

❍ Function can be implemented with
NAND gates only

■ Procedure from K map

❍ present the simplified function in sum
of product form (AND-OR)

❍ use De morgan’s theorem to represent
the function in NAND-NAND form

■ Similar steps for NOR implementation
starting from product of sums form

A

B

Z

AND-Invert

F = A’ + B’ = (AB)’F = (AB)’

Invert-OR gate

x

z

w

x’

y’ F = xy’z + wx’

A

B

Z=

x

z

w

x’

y’ F = xy’z + wx’

x

z

w

x’

y’ F = xy’z + wx’

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 84 of 92

Other Two-Level Implementations

■ Wired Logic, Transistor-Transistor Logic (TTL)

❍ Wired logic: if outputs of two logic gates are shorted together

❍ TTL style implementation allows wired connection

❍ Other two level implementations are AND-OR-INVERT and
OR-AND-INVERT

+ 5 V

R

OutAND
logic

NAND gate

+ 5 V

R

x y

wired AND gate

Out

+ 5 V

R

Input

Out

NOT gate

Inputs

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 85 of 92

Simplest Two-Level Expression

■ Some definitions

❍ Implicant: a grouping of one or more K map cells

❍ Prime implicant: an implicant that is not a subset of another
implicant

❍ Essential prime implicant: a prime implicant that covers at
least one minterm not covered by another prime implicant

■ Example, f(w,x,y,z) = (0,1,2,5,6,7,9,14) + d(13)∑
yz

wx 00 01 11 10

00

01

11

10 1

1

1 1

1 1

1X

1

yz
wx 00 01 11 10

00

01

11

10 1

1

1 1

1 1

1X

1

prime implicantsessential prime implicants

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 86 of 92

❍ Essential prime implicants: y’z, xyz’

❍ Prime implicants: w’x’y’, w’x’z’, w’xz, w’xy, w’yz’

■

minterms covered

65210 7 9 14

y’z (1,5,9,13)

w’xy (6,7)

w’yz’ (2,6)

w’xz (5,7)

w’x’z’ (0,2)

w’x’y’ (0,1)

xyz’ (6,14)

*

*

A

B

C

D

E

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 87 of 92

■ All minterms must be covered

❍ Essential prime imlicants must be included (*)

❍ Different combinations of prime implicants are:

B + C; or B + D; or A + C + E; or A + D + E

■ B + C or B + D are the simplest, hence the simplest function
implementation is

❍ F = y’z + xyz’ + w’x’z’ + w’xz or y’z + xyz’ + w’x’z’ + w’xy

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 88 of 92

Tabulation (Quine-McCluskey) Method

■ The map method of simplification is convenient if number of
variables does not exceed beyond 4 or 5

❍ Tabulation method is preferred for a function with large number
of variables

❍ for F = f(w,x,y,z) consider two adjacent minterms

let a = m4 + m5 = w’xy’z’ + w’xy’z = w’xy’

or = 0100 + 0101 = 010-

❍ similarly, let b = m12 + m13 = wxy’z’ + wxy’z = wxy’

or = 1100 + 1101 = 110-

❍ similarly, c = m4 + m5 + m12 + m13 = a + b

= w’xy’ + wxy’ = xy’

= 010- + 110- = -10-

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 89 of 92

❍ Adjacent minterms differ by a single bit in their binary represen-
tation

❍ Tabulation method consists of grouping minterms and systemat-
ically checking for single bit differences

■ Example, f(w,x,y,z) = (0,3,4,6,7,8,10,11,15) + d(5,9)

❍ Group minterms according to number of 1’s in binary represen-
tation

❍ Each element of each section is compared with each element of
the section below it; all reductions are recorded in next column

❍ Mark terms that combine

❍ All unmarked terms are prime implicants

∑

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 90 of 92

w x y z

0 0 0 0 0
-- -----------------

4 0 1 0 0
8 1 0 0 0
-- --------------------
3 0 0 1 1
5 0 1 0 1
6 0 1 1 0
9 1 0 0 1
10 1 0 1 0
-- -------------------
7 0 1 1 1
11 1 0 1 1
-- -----------------
15 1 1 1 1

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 91 of 92

0 0,4 (4) 4,5,6,7 (1,2)
---- 0,8 (8) 8,9,10,11 (1,2)
4 ------------ ----------------------
8 4,5 (1) 3,7,11,15 (4,8)
---- 4,6 (2)

3 8,9 (1)

5 8,10 (2)

6 -----------
9 3,7 (4)

10 3,11 (8)

---- 5,7 (2)

7 6,7 (1)

11 9,11 (2)

--- 10,11 (1)
15 ----------

7,15 (8)

11,15 (4)

E & C E 2 2 3

Department of Electrical & Computer Engineering, University of Waterloo
 92 of 92

❍ F(w,x,y,z) = 0,4 + 4,5,6,7 + 8,9,10,11 + 3,7,11,15
0-00 + 01-- + 10-- + --11
w’y’z’ + w’x + wx’ + yz

❍ or F(w,x,y,z) = 0,8 + 4,5,6,7 + 8,9,10,11 + 3,7,11,15
-000 + 01-- + 10-- + --11
x’y’z’ + w’x + wx’ + yz

4 10 11 1587630

0,4

0,8

4,5,6,7

8,9,10,11

3,7,11,15

minterms coveredPrime
implicants

