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Abstract

For wireless networks with multiple sources, an omnidirectional relay scheme is developed, where
each node can help relay multiple messages in different directions. This is accomplished by the decode-
and-forward relay strategy, with each relay binning the multiple messages to be transmitted, in the same
spirit of network coding. Specially for the all-source al-cast problem, where each node is an independent
source to be transmitted to all the other nodes, this scheme completely eliminates interference in the
whole network, and the signal transmitted by any node is used by any other node. For networks with
some kind of symmetry, assuming no beamforming is to be performed, this omnidirectional relay scheme
is capable of achieving the maximum achievable rate.

|. INTRODUCTION

In wireless networking, relay is a way of expanding communication range or increasing
communication rate, with the help of other nodes. As such, more nodes are involved and more
signals will be transmitted. It is therefore important to design and coordinate these signals to
maximize the cooperation and minimize the interference. Between the two fundamental relay
strategies proposed in [1], especialy, the decode-and-forward strategy enables the destination
node to fully enjoy the transmitted power of both the source node and the relay node. This
is dtill realizable when multiple relays are introduced to help the destination [2], [3], [4], and
interference can be completely eliminated for arbitrarily large networks.

However, the situation is much more complicated when there are multiple sources in the
network [5]. Unlike the case of a single source where all nodes are essentially transmitting the
same information, multiple sources seem inevitably result in interference. Nevertheless, studies
of the two-way relay channels [6], [7] have indicated the possibility of no interference even if
there are more than one sources.

In this paper, we develop an omnidirectional relay scheme for wireless networks with multiple
sources, where, each node can simultaneously relay different messages in different directions.
This is accomplished by binning multiple messages at each relay, as a generalization of the
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scheme proposed in [7]. Theideais basically the same as network coding [8]. The superposition
coding approach proposed in [6] can also be generalized. However, the coding scheme becomes
much more involved in general networks and will not be considered here.

As a specia application which may be the best to demonstrate the benefit of this omnidirec-
tional relay scheme, we are interested in the al-source all-cast problem, where each node is an
independent source, to be sent to all the other nodes. We will show that for such problems, it is
possible to completely eliminate interference in the network, and each node will enjoy the power
transmitted by all the other nodes.

The remainder of the paper is organized as the following. In Section [, we introduce a
general framework of omnidirectional relay with arbitrary source-destination distributions in
mind. Starting from Section [[II, we will focus on the all-source all-cast problem. First, a special
version of the omnidirectional relay scheme is developed in Section [II] for the all-source all-
cast problem. Then a key technical lemma is presented in Section [V], before we prove some
achievability results in Section [Vl Finally, some concluding remarks are in Section V11

[I. OMNIDIRECTIONAL RELAY SCHEME

Consider a wireless network of n nodes N' = {1,2,...,n}.
Consider the following AWGN wireless network channel model:
Y;(t) = gi;Xi(t) + Zi(t), ViEN, t=12 .. (1)
%

where, X;(¢) € C' and Y;(t) € C' respectively denote the signals sent and received by Node
i e N attimet; {g;,; € C' : i # j} denote the signal attenuation gains; and Z;(t) is zero-mean
complex Gaussian noise with variance V.

Consider the networking problem where each node i € A/ wants to send the same information
a rate R; (can be zero) to al the nodes in a subset 7; C N. Or reversely, each node i € N
wants to receive the information sent by all the nodes in some subset S; C . To achieve this,
we design an omnidirectional relay scheme as the following.

We choose a sequence of decode-sets and encode-sets for each node in A/ in the following
order. First, for each node i € \, choose a subset of V'\{i} as its 1-hop decode-set D;;), and
then choose a subset of D, as its 1-hop encode-set &;(;y. That is,

Eiqy € Digry € N\{i}



Then, for each node 7 € A/, choose its 2-hop decode-set and encode-set as

Dizy € M\ {{i} UDipy)}
iy S {Diy UDin } \Ei)

Sequentially, for £ = 3,4, ..., L, where L is some selected finite integer, node i’s k-hop decode-
set and encode-set are chosen as

Diwy € M\ {{i}UDjqyU---UDip1)}
iy C {Di(l) U..-U Di(k)} \ {gi(l) U---U gi(k—l)}

We use block Markov coding. Consider B blocks of equal length, and in each block b =
1,2,..., B, denote the message of node i by w;(b), which is encoded at rate R;.

In block 1, each node i transmits its own message w;(1). At the end of block 1, each node i
decodes the messages sent by the nodes of its 1-hop decode-set, i.e., {w;(1) : j € Djxy}.

Inblock 2, each node i transmits {w;(2), we,,, (1) } using the binning technique, where, we, , (1)
stands for {w;(1) : j € &q)}. That is, besides its own message w;(2), node ¢ also helps
transmitting the previous-block messages of the nodes in its 1-hop encode-set, which have been
decoded by node i since &;1y C D;(;y. At the end of block 2, each node 7 decodes the block-2
messages of the nodes in its 1-hop decode-set and the block-1 messages of the nodes in its 2-hop
decode-set, i.e., {wp,,(2), wp,, (1)}

Sequentialy, in block b = 3,4, ..., each node i transmits {w;(b), we,,, (b—1),...,we,,_, (1)}
using the binning technique, and decodes {wnp,,,(b), . .., wp,,, (1)} a the end of block b, where,
let &) = Digy = 0 when b > L, and always set wy(l) =0 for any [ > 1.

To implement the above omnidirectional relay scheme, we can use regular encoding/dliding-
window decoding with random binning at each node, as has been used in several simple networks
in [7]. Note that random binning can be replaced by deterministic binning that is easier to
implement, although random binning is simpler to describe in the achievability proof.

In order to successfully carry out the above omnidirectional relay scheme, obviously, the
necessary and sufficient condition isthat at theend of each block b = 1,2, 3, .. ., every nodei € N/
can successfully decode {wp,,(b),...,wp,, (1)}. This is essentidly a multi-block multiple-
access problem, which will be discussed in detail in Section [V1

Apparently, the result of successfully carrying out the omnidirectional relay scheme for B
blocks, with B > L such that (B — L)/B ~ 1, is that each node i receives the messages
generated by all the nodes in the set Uﬁzl D;1,), approximately at their initial rates. Therefore,
the original networking problem is solved as long as S; C Uﬁzl Dy forall i € N.



Hence, the key step in the design of the omnidirectional relay scheme is the selection of
appropriate decode-sets and encode-sets. The sizes of decode-sets are restricted by the decoding
requirement, but should be large enough to finally cover all the intended source nodes. Larger
encode-sets result in more messages being helped, but may increase the decoding burden to
some nodes that may not be interested in all the messages. It is instructive to note that finally,
for any node 7, the signals transmitted by all the nodesin Ule D) are decoded, either as useful
messages, or as useless messages but not causing interference, while the signals transmitted by
al the nodes in A"\ Jy_, Di) are not decoded, thus causing interference.

I11. ALL-SOURCE ALL-CAST PROBLEM

In order to demonstrate the benefit of the omnidirectional relay scheme, in this paper, we
focus on the specia networking problem where all the nodes are independent sources and each
node wants to send its information to all the other nodes in the network. That is, we consider
the specia case where 7; = M\ {i} for al i € N, or equivaently, S; = M\{i} for al i € V.
Naturally, this can be named as the al-source all-cast problem. To simplify the studies, we only
address the case where all rates R; are equal to some common rate R.

We make a very general assumption on the signa attenuation. We only assume that longer
distance, higher attenuation. That is, there is a non-increasing function to relate the magnitude
of the gainsin (1) to the distance:

\9i5] = g(di;), )

where d; ; is the distance between node ¢ and node j, and ¢(-) is some non-increasing function.
For simplicity, we assume the same transmit power constraint P for all the nodes. Therefore,
when a node ; is transmitting at its full power, the corresponding received power at another node
j is|gi;*P.

We will show that for the all-source all-cast problem, it is possible to completely eliminate
interference in arbitrarily large wireless networks, and each node can make use of the signals
transmitted by all the other nodes. More importantly, we will show the achievability of the fol-
lowing common rate for the all-source al-cast problem for some networks by the omnidirectional

relay scheme:
min} . |gi;*P
log | 1+ -2 ©)

R <

n—1 N

Obviously, >_,; |9:.;]*P is the total received power at node ;j if the signals transmitted by
different nodes didn't add up coherently at the receiver. This will be the case if independent



codebooks are used & different nodes. Then, min; 3~ . [g:;|*P corresponds to the node whose
total received power is the least. Since every node needs to decode al the other n — 1 sources,
() clearly is the highest common rate R achievable for the al-source al-cast problem according
to the Shannon formula.

It may be possible to achieve higher rates than (3) by using correlated codebooks at different
nodes to boost the received power at some nodes, say, by beamforming. This idea was imple-
mented with superposition coding in the original decode-and-forward relay scheme in [9]. It can
also be applied to situations with more than one sources, e.g., the two-way relay case in [6], and
the general framework in [5]. However, this may be hard to implement in practice due to, e.g.,
the lack of channel state information at the transmitters. Moreover, note that cooperating signals
must represent the same information in order to cooperate, which means that they cannot help
the transmission of other different messages. This may not be a good choice for the all-source
al-cast problem, where the messages to be transmitted by any two nodes are not completely the
same.

We will show that the rate (3) is achievable for networks with some kind of symmetry, which
include the network depicted in Fig. [I where the nodes are evenly spaced. In the following,
we first develop a special version of the omnidirectional relay scheme for the all-source all-cast
problem, where network topology is taken into consideration.

1 2 3 n
[} [} [} [} [} [} [}
+“—r4—>
dg dop

Fig. 1. A regular network.

A. A distance-regulated omnidirectional relay scheme

We introduce the concept of k£-hop neighbors in the network in the following way. First, for
each node 7, define a set of nodes in its neighborhood as its 1-hop neighbors, and denote the
set as Nj(1y. The way of defining 1-hop neighbors depends on the network topology and will be
specified later on for different networks. If node j is a 1-hop neighbor of node 4, it is said that j
can reach i in one hop. If furthermore, 7 is a 1-hop neighbor of node /, then it is said that j can
reach [ in two hops. Similarly, it can be said that a node can reach another node in £ hops, for
any positive integer k. Now, for each node i, its k£-hop neighbors is defined as the set of nodes



that can reach it in k£ hops, but not in less hops, and denote this set as V(). Mathematically,
Ny can be sequentially defined as

Niwy ={j : j € Ny for some I € N1y, (4)
and j ¢ {i} UN;qy U -~ UNjg-n}-

It is clear that for any network of a finite number of nodes, there is a finite number L; for each
i € N, such that Ny = 0 for k > L;.

We use block Markov coding. In block 1, each node i transmits its own message w;(1). At the
end of block 1, each node 7 decodes at |east the messages sent by its 1-hop neighbors {w;(1) :
j € Niy} (Maybe more can be decoded). In block 2, each node i transmits {w;(2), wy,,, (1)}
using the binning technique, where for simplicity, wy;, (1) stands for {w;(1) : j € Niq)}. At
the end of block 2, each node i decodes at |least the block-2 messages of its 1-hop neighbors and
the block-1 messages of its 2-hop neighbors, i.e., {wy;,,(2), wx;, (1)}. In block 3, each node
i transmits {w;(3), wy,,, (2), wa;,, (1)} using the binning technique. Generaly, in block b, each
node i transmits {w;(b), wy,,,(b—1),...,wx;,_,, (1)} using the binning technique, and decodes
{wn,y(0), -, war,, (1)} @t the end of block b, where, when the block number is large enough
such that V) =0, wy(l) = 0 for any [ > 1.

Obviously, &, corresponds to N in this special version, while D;, can be arbitrary as
long as

ExyU---U&w CDyyU---UDyy, foranyie N andk > 1.

In order to solve the all-source all-cast problem where each node needs to decode the messages
of al the other nodes, for the networks to be discussed in Section [V], we will choose the 1-hop
neighbor sets {\;) : i € N'} in away such that for any i € N,

L;
U Niwy = M\{i}- ©)
k=1

To show that this scheme works for some networks, we start with a key technical lemma in

next section, which discusses a multiple-access decoding based on multiple blocks.

IV. KEY TECHNICAL LEMMA: MULTI-BLOCK MULTIPLE-ACCESS
Consider an AWGN multiple access channel
Y(t) =) Xi(t)+ Z(1),
iEM
where, M = {1,2,...,m} denotes the set of sources.



According to the well known multiple-access capacity region [9, Ch.14], arate vector (R, ..., R.,)
is achievable if and only if the inequality

> R; <log (1+#> (6)

€S
holds for al non-empty subsets S C M. Namely, if each source i € M encodes its message
w; a rate R; with independent Gaussian block codewords X, (w;) with power P;, then (6) is the
necessary and sufficient condition such that {wy, w,, ..., w,} can be decoded, in the sense that
the decoding error can be made arbitrarily small by increasing the block length.

Obviously, (6) needs to hold for all nonempty S C M in order to decode {w, ws, ..., wy,}.
However, it may not be so commonly recognized that as long as (€) holds for some non-empty
S C M, there must be some nonempty subset of {wi,ws,...,w,} that can be decoded. This
actually follows as a ssimple corollary. Without loss of generality, here, we show that the following
single inequality

ieam i
> R <log (1 + Z&) (7)
. N
1EM
i.e, (@) with S = M, will always ensure that some nonempty subset of {w;,ws, ..., w,} can

be decoded.
To prove this, we use a contradiction argument. Suppose (6) doesn’t hold for some A C M,
i.e,

ea P
> R; >log (1+E€TA). (8)
icA
Then taking the difference between (7) and (8), we have
P,
> Ry <log (1 + Z%) 9)
i€ Ae A

where, A°= M\A, and Ny =>",_, P, + N. Now, by comparing (@) with (2), we arrive at the
same situation as (7)) with M replaced by A°¢, and N replaced by N 4. Similarly, if the inequality
> R; <log (1 + ¥> (10)
ics A
holds for al nonempty S C A, then the subset of messages {w; : i € A°} can be decoded;
Otherwise, if (10) doesn’t hold for some B C A, the process can be continued with B¢ = A“\B.
As the size of the subset decreases, we must be able to reach a nonempty subset where all
the necessary inequalities of the type (10) hold, and thus the messages can be decoded. This is
obvious, since if the process continues without stopping, it must reach a subset with only one
source, and by then, the single inequality like (9) suffices for the decoding.



Therefore, we proved that if (7) holds, there must exist a nonempty subset M, C M such
that {w; : i € My} can be decoded, while {w; : i € M;} with M; = M\ M, cannot.

Now, in our block Markov coding setting with relays, the nodes help each other to transfer
messages. To put into this perspective, let us consider a two-block decoding situation where in
the first block {w;(1) : i € M} are decoded while {w;(1) : i € M;} are not, and in the second
block, each node i € M, helps transmitting some messages from {w;(1) : i € M;} besides its
own message w;(2). The goal now is to decode {w;(2) : i € My} U{w;(1) :i € M,} at the end
of the second block. In consistency with our notation earlier, denote w ., (1) = {w;(1) : i € M},
W, (2) = {w;(2) : i € Mo}, and {wag, (2), war, (1)} = {w;(2) 11 € My} U{w;(1) 14 € My},

Denote J7; C M as the set of nodes that node : helps in the second block, i.e., node i sends
a codeword X, (w;(2),wz (1)) by binning the multiple messages in the second block. Reversely,
denote Z; C M as the set of nodes that will help node 7 to transmit w;(1) in the second block.

For any subset S C M, let §; = SN M,, and let

S, = (SN M) U (TN Ms). (11)
1€ST
That is, S, also consists of nodes from M, that may not be in S, but are helping transmitting
ws, (1). Then, it can be easily verified with a typical sequence argument that {wa4,(2), was, (1)}
can be decoded if and only if for any nonempty subset S C M,
Zi S1 Pl Zz Sa Pl
;Ri < log (1 + = > + log (1 + Zz‘e/\/fpi - N) (12)
where the first term is the contribution of nodes S; from the first block, and the second term is
the contribution of nodes S, from the second block. Actualy, it is rather instructive to think of
the constraints (12) for al nonempty S C M as a two-block multiple-access region.

Although it is necessary that the inequality (12) should hold for all nonempty S C M in order
to decode {w,(2), waq, (1)}, asin the case of one-block multiple-access discussed earlier, we
will show that the following single inequality

2iem b 2icm, L
Z_;:ARZ- < log (1 + Eﬁ; ) + log (1 + ZZ-GMEIA;% " N) (13)
i.e, (12 with § = M, is enough to ensure that some nonempty subset of {w,(2), wa, (1)}
can be decoded.

We still use a contradiction argument. If (12) holdsfor all nonempty S C M, then {w4, (2), war, (1)}

can be decoded; Otherwise, if for some nonempty A ¢ M, (12) doesn’t hold, i.e.,

ZRiZIOg(l—l—M)_i_log (HZZZ-%P,» ) ”

icA N o PN




then taking the difference between (13) and (14), we have

Dica; i Dicas i
Ri<log|l+ =——F——< | +log|1+ s (15)
2 ( Sn BTN Sn Pt S BN

icAc
where, A° = M\ A, Af = M\ A, and A5 = M5\ A,. By the definition (L1), it simply follows
that A C A, UA, and A° O AU .AS. Hence, by replacing A¢ with A{ U Aj$ in the left-hand-side
of (15), we have

ZieAC b ZieAc P;
R <log |1+ =——F——= | +log|1+ 2 . (16)
Z ( Diea it N Diea, Bi+ 2iem, B+ N

I€EASUAS

This is the same situation as (13) with M replaced by A U A5, M, replaced by AS, M,
replaced by A5, and some adjustment of the noises. Now, the messages to be decoded are
{wag(2), w4 (1)}. Asin the case of one-block multiple-access discussed earlier, such a process
can be continued until we find a nonempty subset of {w,(2), wa, (1)} that can be decoded.

Therefore, we proved that the inequality (13) alone ensures that there always exists a nonempty
subset of {way,(2), wa, (1)} that can be decoded. Note that by combining the two terms on the
right-hand-side, (13) becomes

> R <log (1 + LJ\A;P) (17)
1eEM

which is exactly the same as (7). In other words, the inequality (7) or (I7) makes sure that there
are always some messages that can be decoded, no matter whether it is one-block multiple-access,
or two-block multiple access with relays.

It is now clear that generally we have the following conclusion for K-block multiple-access
with relays.

Lemma 4.1: Consider a K-block decoding situation where {waq, (K), ..., wa, (1)} are to be
decoded for some digoint subsets M, £k = 1,..., K with U,le M = M, or equivaently to
say, that {wa, (K —1),...,wap, (1)} have been decoded for & = 2,..., K. During each block
k=2,...,K, every node i € M, helps transmitting a subset of {wx, ,(k —1),...,war, (1)}
besides its own message w;(k) with the binning technique. Then there is aways a nonempty
subset of {w, (K),...,wa, (1)} that can be decoded if (17) holds.

V. NETWORKS WITH SYMMETRIC TRAFFIC

After the discussion of last section, it is clear that no matter how complicated the relay situation
is, a the end of each block b, every node i can always decode the new messages w(b) of a
nonempty set of nodes G;(b) C N, under the condition (3). (More detailed arguments about
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this will be presented in the proof of Theorem [5.1). Then in order to successfully carry out the
distance-regulated omnidirectional relay scheme presented in Section [, we only need to make
sure that for each i € N/

Nity € Gi(b), foralb=1,...,B. (18)

Due to the monotonicity of the power attenuation model (2), messages sent by nodes that
are closer are generally easier to decode, and therefore it is natural to choose Ny as a set
composed of the closest nodes. In view of the requirement (18), it is preferable to put as few as
possible nodes into ;). However, for the all-source all-cast problem, each N,y should contain
sufficiently many nodes so that (5) holds, i.e., the whole network will be covered and each node
will decode the messages of all the other nodes.

When we are sure that there are some nodes whose messages can be decoded but not knowing
how many of them there are, it is not clear whether the messages of al the nodes in V;; can be
decoded if V() contains more than one nodes. However, there is a specia situation where we
can be sure, i.e., when there is some kind of symmetry to all the nodes in (), in the sense that
if one of them can be decoded, the others certainly can. Two simple examples of this are shown
in Fig. [2, where clearly, for any node i, the traffic is symmetric on both sides. For each node i,
by choosing V(1) as its two neighboring nodes, which are mostly easy to decode, it is certain
that both of them can be decoded. Since (§) obviously holds by this definition, the all-source
all-cast problem for these networks is solved under the condition (3).

Fig. 2. Two symmetric networks.

The network depicted in Fig. 1 is not completely symmetric. For any node not in the center,
i.e, i # (n+ 1)/2, the traffic on one side is heavier than the other side. However, there is still
some kind of symmetry as we will show later on, so that any non-boundary node i ¢ {1,n} can
decode the messages of both its neighbors {i — 1,7+ 1} simultaneously, under the condition (3).
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We will first prove this for more general network topologies, and then the regular topology in
Fig. [ will follow as a ssimple corollary. Alternatively, a direct proof for the regular network in
Fig. 1 has been presented in [10].

Fig. 3. A genera one-dimensional network.

Consider a general wireless network of n nodes located on a straight line, labeled sequentialy
by 1,2,...,n, as depicted in Fig. 3 It is convenient to introduce the notation

P,; = |gij|*P
forany i,j € {1,2,...,n}.
For any node i ¢ {1,n}, let its 1-hop neighbors be Ny = {i — 1,7+ 1}. Let Ny = {2}
and N,y = {n — 1}. We will show that the distance-regulated omnidirectional relay scheme

presented in Section [[II] works for this one-dimensional network as long as the common rate R
satisfies (3) and the following two symmetric sets of constraints for every i € {2,3,...,n — 1}:

1) Forany / =1,...,i— 2, a least one of the following two inequalities holds:

Pi PZ. PZ i Pni
(l+n—i)R < log<1+ it e “LN wit ot ) (19)
, Piyri+---+ Py
or —-)R < 1 1+ : : 20
(n— 1) og< P17i+---+Pg,,-+N) (20)
i) Forany r=17+2,...,n, & least one of the following two inequalities holds:
P+ -+ P i+ Pyt -+ Py
(i+n—r)R < log (1 + b R 1,; ittt o ) (21)
, Puoi+--+ P
or - 1R 1 1 : ’ 22
(i-1R < 0g< +Pr,i+"'+Pn,i+N> (22)

In other words, we have the following theorem.

Theorem 5.1: For the one-dimensiona wireless network, a common rate R is achievable for
the all-source all-cast problem with the omnidirectional relay scheme, if it satisfies (3), and also
for every i € {2,3,...,n — 1}, the above constraints i) and ii) hold.
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Proof: With the distance-regulated omnidirectional relay scheme, we only need to show that
at the end of each block b, every node i can decode wy;,,, (b).

Obvioudly, for any node i and at the end of any block b, there are a sequence of digoint
subsets My, k = 1,...,b (can be empty) with | J!_, M, = M\ {i} such that {w, (b), was,_, (b—
1),...,wa, (1)} are to be decoded, or equivalently to say, that {wa4, (k—1),...,wa, (1)} have
been decoded for any k£ = 2,...,b in the previous blocks. Then according to Lemmal4.1], there
must exist a nonempty subset of {w, (), wa,_,(b—1),...,wa, (1)} that can be decoded, due
to

Puit+-+Piai+ P+ + Py
(n—l)R<log<1+ Li e e, ;:[ Hit et ) (23)
which follows from (3). If this nonempty subset is digoint with w .4, (b), then after the decoding,
we arrive at a similar situation with another sequence of digoint M’, & = 1,...,b with

Ur_, My, = N\{i}. Then Lemma &I can be applied again with (23) so that more messages
can be decoded. This process can be continued as long as all nodesin N'\{i} have messages to
be decoded. In other words, finally, there must be a nonempty subset M; C N\{i} such that
w; (b) can be decoded at the end of block b.

According to the relay structure and the monotonicity of the power attenuation, M can only be
one of the following three types of subsets of nodes: {/,...,i—1} forsome?¢ < i; {i+1,...,r}
for somer > i;or {¢,...,i—1,i+1,...,r} for some ¢ < i < r. Thisis simply based on
the observation that on either side, it is always easier to decode messages from nodes closer. If
¢ 1S a boundary node, i.e, 1 or n, then only one of the first two types is possible and clearly
Ny € M;. Now, for a non-boundary node i € {2,3,...,n — 1}, al three types are possible.
If M; is of the third type, then clearly, N;i) C M; and the proof is finished. If M; is of the
first type, then Lemmald.1 still can be applied with either (19) or (20) continually until w; ., (b)
is decoded. Note that the case (20) is different from (19) in the sense that there is no intension
to decode the messages of the nodes {1,..., ¢}, and their transmissions are treated as noise.
Actually, they may not be all causing interference in all blocks, and hence, the condition needed
to apply Lemmal4.1 may be weaker than (20). Symmetrically, it can be shown that w; (b) will
be decoded based on either (21) or (22) if M; is of the second type. Therefore, we've shown
that wy;,, (b) will always be decoded. This concludes the proof.

O

Now, we show that for the regular network in Fig. [, any rate satisfying (3) must satisfy the
constraints i) and ii). Thus, the rate (3) is achievable.
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Due to the equal separation distance d, and the power gain model (2), it is convenient to define
P; = g(idy)P  forany i > 1.
Then, P;; = P;_; for any i # j. According to the monotonicity of the function g(-), we have
P>P>--->PF, . (24)

With this new notation, (3) becomes

Og<1+P1+P2+ ..+Pn1> 25
N
where, the total received power corresponds to any one of the boundary nodes, and is the smallest
among all the nodes. The constraints i) and ii) become: For every i € {2,3,...,n — 1},
1) Forany / =1,...,i— 2, a least one of the following two inequalities holds:
P+ P
(t+n—i)R < log<1+2]l£ NZ ) (26)
Zn ZP
or (n—4)R < log |1+ (27)
Z] P+ N
i) Forany r=1+2,...,n, & least one of the following two mequalities holds:
P; +
(i+n—-r)R < log( Z NZ] =ro ) (28)
‘ Zz 1 P
or (i—1)R < log|1+ (29)
Y P+ N

Now, we verify that at least one of (26) and (27) must hold. First, note that by the concavity
of the logarithmic function, it follows from ([24) and (25) that for any 1 < k£ <n —1,

Pi+Pyt...+P
kR<log<1+ L 2; i ’“) (30)

Specially, when £ =i — 1, we have

(31)

,— 1 1 1
(i—1R< og(—l— N

If i —¢<n—i+1,by (24), we have

P1+P2+...+Pil>

n—i+4

ZP+ZP>ZP

j=i—¢
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and thus, by (30) with &k = ¢ + n — ¢, (26) holds. Otherwise, if i — ¢ > n — i + 1, we check the

following inequality -
—lp,
(R < log (1 + Lf—j’f ’) : (32)

If (32 holds, then by (31), (24) and the concavity of the logarithmic function, (26) follows.
Otherwise, if (32) doesn’t hald, i.e.,

i—1
Y =
(R > log <1 + #) , (33)
taking the difference between (31) and (33), we have
i—0—1
—lp
(i—1—0OR<log |1+ EJ—I L. (34)
iji—epj + N

Then again by (24) and the concavity of the logarithmic function, we have (27).

Similarly, by symmetry, we can show that at least one of (28) and (29) must hold. Therefore,
we arrive at the following theorem.

Theorem 5.2: For the one-dimensional regular wireless network in Fig. [1, the common rate
(29 is achievable for the al-source all-cast problem with the omnidirectional relay scheme.

7

e 98

1 3 5 [ J
° ° ¢ E °
;e ;

4
Fig. 4. A general network with nodes clearly ordered by distance.

2 n
1 ° 3 ° ° °

° ° ° °

Fig. 5. A regular network with a clear ordering of nodes by distance.

Remark 5.1: In all the arguments above, obvioudly, it is not necessary for all the nodes to be
located on a straight line, as long as they can be clearly ordered in terms of the distances, i.e.,
there is a way of labeling the nodes so that d; ; < d;,, forany ¢ < j < k, or k < j < 7. One
such example is shown in Fig. 4, and a regular case is shown in Fig. B In such cases, Theorem
or 5.2 till applies.
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V1. CONCLUSION

We developed an omnidirectional relay scheme for wireless networks with multiple sources,
where each node can simultaneously relay multiple messages in different directions by binning
them into a single signal. This scheme also exploits the broadcast nature of wireless commu-
nication, such that one node helps multiple nodes, and multiple nodes help one node. In the
extreme, this scheme is capable of completely eliminating interference in the whole network,
and specially, for the all-source al-cast problem where all messages are of interest, each node
can benefit from the signals transmitted by all the other nodes. We also demonstrated some kind
of optimality of this scheme by showing that it achieves the maximum rate possible for some
networks if no beamforming is performed.

It is possible to make the omnidirectional relay scheme presented in Section [Il more general
by introducing layered coding structure at each node. This will admit superposition coding for
beamforming, and will also make it possible to transmit different messages for different nodes,
as in the basic scheme in the broadcast channel [11]. Much remains to be done.
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