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Abstract

In the classical compress-and-forward relay scheme developed by (Cover and El Gamal, 1979), the decoding
process operates in a successive way: the destination first decodes the compressed observation of the relay, and
then decodes the original message of the source. Recently, two modified compress-and-forward relay schemes
were proposed, and in both of them, the destination jointly decodes the compressed observation of the relay
and the original message, instead of successively. Such a modification on the decoding process was motivated
by realizing that it is generally easier to decode the compressed observation jointly with the original message,
and more importantly, the original message can be decoded even without completely decoding the compressed
observation. Thus, joint decoding provides more freedom in choosing the compression rate at the relay, i.e., the
relay’s observation can be compressed at a rate higher than supportable by successive decoding.

However, the question remains whether this freedom of choosing a higher compression rate at the relay
improves the achievable rate of the original message. It has been shown in (El Gamal and Kim, 2010) that the
answer is negative in the single relay case, and the achievable rate obtained in (Cover and El Gamal, 1979) with
successive decoding is still the best. In this paper, we further demonstrate that in the case of multiple relays,
there is no improvement on the achievable rate by joint decoding either. More interestingly, it is discovered that
any compression rates higher than supportable by successive decoding will actually result in a strictly lower
achievable rate for the original message. Therefore, to maximize the achievable rate for the original message, the
compression rates should always be chosen to be supportable by successive decoding. The freedom of choosing
higher compression rates introduced by joint decoding is actually obtained at the sacrifice of the achievable rate
for the original message. This phenomenon is also shown to exist under the repetitive encoding framework recently
proposed by (Lim, Kim, El Gamal, and Chung, 2010), which improves the achievable rate in the case of multiple
relays compared to the classical encoding framework. Here, another interesting discovery is that the same achievable
rate can be obtained without repetitive encoding if the relays encode with memory of previous blocks.

I. INTRODUCTION

The relay channel, originally proposed in [1], models a communication scenario where there is a relay
node that can help the information transmission between the source and the destination. Two fundamentally
different relay strategies have been developed in [2] for such channels, which, depending on whether the
relay decodes the information or not, are generally known as decode-and-forward and compress-and-
forward respectively. The compress-and-forward relay strategy is used when the relay cannot decode
the message sent by the source, but still can help by compressing and forwarding its observation to the
destination. Specifically, consider the relay channel depicted in Fig. 1. The relay compresses its observation
Y1 into Ŷ1, and then forwards Ŷ1 to the destination via X1. To reduce the rate loss caused by the delay,
block Markov coding was used in [2], and more blocks leads to less loss.

In this paper, based on the differences in the detailed encoding/decoding processes, the following six
different compress-and-forward relay schemes will be considered.
• Cumulative encoding/successive decoding,
• Cumulative encoding/joint decoding,
• Repetitive encoding/successive decoding,
• Repetitive encoding/joint decoding,
• Cumulative encoding/relay with memory/successive decoding,
• Cumulative encoding/relay with memory/joint decoding.
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Fig. 1. The single relay channel.

The cumulative encoding/successive decoding refers to the original compress-and-forward scheme
developed in [2]. The encoding is “cumulative” in the sense that in each new block, a new piece of
information is encoded at the source. This distinguishes from a “repetitive” encoding process recently
proposed in [8], where the same information is encoded in each block. The decoding is successive in
the sense that the destination first decodes the compressed observation of the relay, and then decodes the
original message. The compressed observation Ŷ1 can be first recovered at the destination, as long as the
following constraint is satisfied:

I(X1;Y ) ≥ I(Y1; Ŷ1|X1, Y ). (1)

Then, based on Ŷ1 and Y , the destination can decode the original message X if the rate of the original
message satisfies

R < I(X; Ŷ1, Y |X1). (2)

The above two-step successive decoding process requires Ŷ1 to be completely decoded. This facilitates
the decoding of X , but is not a requirement of the original problem. Recognizing this, a joint decoding
process has been proposed in [4]-[7], where, instead of successively, the destination decodes Ŷ1 and X
together. It turns out that the decoding of X can be helped even without completely decoding Ŷ1, i.e.,
only to determine Ŷ1 to within a set of possibilities. Thus, with joint decoding, the constraint (1) is not
needed, and instead of (2), the achievable rate is expressed as

R < I(X; Ŷ1, Y |X1)−max{0, I(Y1; Ŷ1|X1, Y )− I(X1;Y )}. (3)

Moreover, even if Ŷ1 is to be completely decoded, it can be more easily done by joint decoding, and
instead of (1), we need a less strict constraint:

I(X1;Y ) ≥ I(Y1; Ŷ1|X1, Y,X), (4)

where, it is clear to see the assistance provided by X .
Therefore, compared to successive decoding, joint decoding provides more freedom in choosing the

compression rate of Ŷ1, even at a rate not decodable by the destination. However, the question remains
whether joint decoding necessarily achieves higher rates for the original message than successive decoding
can do. For the single relay case, it has been proved in [5] that the answer is negative, and any rate
achievable by one of them can always be achieved by the other. In this paper, we are going to further
consider the case of multiple relays as depicted in Fig. 2, and demonstrate that joint decoding won’t be
able to achieve any higher rate either. More interestingly, any compression rates higher than supportable
by successive decoding, e.g., violating (1) in the one relay case, will actually result in a strictly lower
achievable rate for the original message. Therefore, to maximize the achievable rate for the original
message, the compression rates should always be chosen to be supportable by successive decoding, e.g.,
satisfying (1) in the one relay case.

Recently, a different encoding process was proposed in [8], where instead of piece by piece, all the
information is encoded in each block, and different blocks use independent codebooks to transmit the same
information. Compared to cumulative encoding, this repetitive encoding has the advantage of introducing
collaboration among all the blocks, so that in the final decoding, all the blocks are helping each other. This
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Fig. 2. The multiple-relay channel.

repetitive encoding process was combined with joint decoding in [8], and although no improvement was
shown in the single relay case, some interesting improvement can be obtained in the case of multiple relays.
In this paper, we consider the combination of repetitive encoding with successive decoding, and similarly
demonstrate that successive decoding performs as well as joint decoding in terms of achievable rates for
the original message when repetitive encoding is used. Moreover, we also show that any compression
rates not supportable by successive decoding will necessarily lead to rate loss of the original message.

As another contribution of this paper, we propose a new compress-and-forward relay strategy where
the relays encode with memory of previous blocks. It is found that when such a help to previous blocks
is offered by the relays, repetitive encoding is not needed at the source to achieve the same rate. To
distinguish from the schemes discussed earlier, we refer to such schemes as cumulative encoding/relay
with memory/successive decoding, or cumulative encoding/relay with memory/joint decoding.

Finally, we point out that the optimality of successive decoding is only shown for the case of a single
destination in the network. When there are multiple destinations in the network, joint decoding may
perform better, since it is more flexible to meet the tradeoff between different destinations.

The remainder of the paper is organized as the following. In the next section, we formally state our
problem setup and summarize the main results. Then, in Section III and Section IV, we thoroughly discuss
the achievability results with successive decoding and joint decoding, and the optimality of successive
decoding, under the frameworks of cumulative encoding and repetitive encoding respectively. Our new
scheme of relay with memory is presented in Section IV-A.

II. MAIN RESULTS

Consider the multiple-relay channel depicted in Fig. 2, which can be denoted by

(X×X1 × · · · × Xn,
p(y, y1, . . . , yn|x, x1, . . . , xn), Y × Y1 × · · · × Yn)

where, X ,X1, . . . ,Xn are the transmitter alphabets of the source and the relays respectively, Y ,Y1, . . . ,Yn
are the receiver alphabets of the destination and the relays respectively, and a collection of probability
distributions p(·, ·, . . . , ·|x, x1, . . . , xn) on Y×Y1×· · ·×Yn, one for each (x, x1, . . . , xn) ∈ X×X1×· · ·×Xn.
The interpretation is that x is the input to the channel from the source, y is the output of the channel to
the destination, and yi is the output received by the i-th relay. The i-th relay sends an input xi based on
what it has received:

xi(t) = fi,t(yi(t− 1), yi(t− 2), . . .), for every time t, (5)

where fi,t(·) can be any causal function.
Before presenting the main results, we introduce some simplified notations. Denote the set N =
{1, 2, . . . , n}, and for any subset S ⊆ N , let XS = {Xi, i ∈ S}, and use similar notations for other
variables. The main results of this paper are two-fold as the following.

i) Under the cumulative encoding framework: In Section III, we first establish the achievable rates for
cumulative encoding/successive decoding and cumulative encoding/joint decoding, as stated in Theorems
2.1 and 2.2 respectively; and then demonstrate the optimality of successive decoding in the sense of
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Theorem 2.3. Specifically, we show that for the general multiple-relay channel, with the cumulative
encoding/joint decoding scheme, the optimal rate can be achieved only if the compression rates at the
relays are chosen such that the compressions can be first decoded at the destination, i.e., successive
decoding can also be carried out.

Theorem 2.1: For the multiple-relay channel depicted in Fig. 2, by the cumulative encoding/successive
decoding scheme, a rate RC/S is achievable if for some

p(x)p(x1) · · · p(xn)p(ŷ1|y1, x1) · · · p(ŷn|yn, xn),

there exists a rate vector {Ri, i = 1, . . . , n} satisfying∑
i∈S1

Ri ≤ I(XS1 ;Y |XSc1) (6)

for any subset S1 ⊆ N , such that for any subset S ⊆ N ,

I(YS ; ŶS |ŶSc , Y,XN ) ≤
∑
i∈S

Ri (7)

and
RC/S < I(X; ŶN , Y |XN ). (8)

Theorem 2.2: For the multiple-relay channel depicted in Fig. 2, by the cumulative encoding/joint
decoding scheme, a rate RC/J is achievable if for some

p(x)p(x1) · · · p(xn)p(ŷ1|y1, x1) · · · p(ŷn|yn, xn),

there exists a rate vector {Ri, i = 1, . . . , n} satisfying∑
i∈S1

Ri ≤ I(XS1 ;Y |XSc1) (9)

for any subset S1 ⊆ N , such that for any subset S ⊆ N ,

RC/J < I(X; ŶN , Y |XN )− I(YS ; ŶS |ŶSc , Y,XN ) +
∑
i∈S

Ri. (10)

Let R∗C/S and R∗C/J be the supremum of the achievable rates stated in Theorems 2.1 and 2.2 respectively.
Theorem 2.3: R∗C/S = R∗C/J, and R∗C/J can be obtained only under the distribution

p(x)p(x1) · · · p(xn)p(ŷ1|y1, x1) · · · p(ŷn|yn, xn)

for which, there exists a rate vector {Ri, i = 1, . . . , n} satisfying∑
i∈S1

Ri ≤ I(XS1 ;Y |XSc1) (11)

for any subset S1 ⊆ N , such that for any subset S ⊆ N ,

I(YS ; ŶS |ŶSc , Y,XN ) ≤
∑
i∈S

Ri. (12)

ii) Under the repetitive encoding framework: In Section IV, we first establish the achievable rates
with successive decoding and joint decoding, and then establish the optimality of successive decoding.
Similarly, we show this optimality by proving that the optimal rate with the repetitive encoding/joint
decoding scheme can be achieved only if the compression rates at the relays are chosen so that successive
decoding can also be carried out.
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Theorem 2.4: For the multiple-relay channel depicted in Fig. 2, by the repetitive encoding/successive
decoding scheme, a rate RR/S is achievable if there exists some

p(x)p(x1) · · · p(xn)p(ŷ1|y1, x1) · · · p(ŷn|yn, xn),

such that for any subset S ⊆ N ,

I(XS ; ŶSc , Y |XSc)− I(YS ; ŶS |XN , Y, ŶSc) ≥ 0, (13)

and
RR/S < I(X; ŶN , Y |XN ). (14)

Theorem 2.5: For the multiple-relay channel depicted in Fig. 2, by the repetitive encoding/joint decoding
scheme, a rate RR/J is achievable if there exists some

p(x)p(x1) · · · p(xn)p(ŷ1|y1, x1) · · · p(ŷn|yn, xn),

such that for any subset S ⊆ N ,

RR/J < I(X,XS ; ŶSc , Y |XSc)− I(YS ; ŶS |X,XN , Y, ŶSc). (15)

It is interesting to note that

I(X; ŶN , Y |XN ) + I(XS ; ŶSc , Y |XSc)− I(YS ; ŶS |XN , Y, ŶSc)
= I(X,XS ; ŶSc , Y |XSc)− I(YS ; ŶS |X,XN , Y, ŶSc).

Let R∗R/S and R∗R/J be the supremum of the achievable rates stated in Theorems 2.4 and 2.5 respectively.

Theorem 2.6: R∗R/S = R∗R/J, and R∗R/J can be obtained only under the distribution

p(x)p(x1) · · · p(xn)p(ŷ1|y1, x1) · · · p(ŷn|yn, xn)

such that for any subset S ⊆ N ,

I(XS ; ŶSc , Y |XSc)− I(YS ; ŶS |XN , Y, ŶSc) ≥ 0. (16)

III. SUCCESSIVE DECODING VS. JOINT DECODING UNDER CUMULATIVE ENCODING FRAMEWORK

We first prove the achievability results stated in Theorems 2.1 and 2.2 respectively.
In both the cumulative encoding/successive decoding and cumulative encoding/joint decoding schemes,

the codebook generation and encoding process is exactly the same as the classical way, i.e., the way in
the proof of Theorem 6 of [2]. The difference between these two schemes is only on the decoding process
at the destination: i) In successive decoding, the destination first finds, from the specific bins sent by
the relays via X1, X2, . . . , Xn, the unique combination of Ŷ1, Ŷ2, . . . , Ŷn sequences that is jointly typical
with the Y sequence received, and then finds the unique X sequence that is jointly typical with the Y
sequence received, and also with the previously recovered Ŷ1, Ŷ2, . . . , Ŷn sequences. ii) In joint decoding,
the destination finds the unique X sequence that is jointly typical with the Y sequence received, and
also with some combination of Ŷ1, Ŷ2, . . . , Ŷn sequences from the specific bins sent by the relays via
X1, X2, . . . , Xn.
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A. A Simplified Model and the Proof of Theorem 2.1
To make the presentation easier to follow, we introduce a simplified channel model as depicted in Fig. 3,

where, the relays are connected to the destination via error-free digital links with capacities R1, R2, . . . , Rn,
where (R1, R2, . . . , Rn) are chosen based on (6). The i-th digital link plays the same role as the Xi → Y
link in Fig. 2, for any i = 1, 2, . . . , n. Such a replacement will not lead to any essential variation of
the original coding scheme, since under the original coding framework, the Xi → Y link is used as a
separate link to forward digital information. The benefit of directly replacing it by a digital link is that the
codebook construction for Ŷi can be simplified, since no Xi needs to be considered. For this simplified
model, (7) and (8) simplify to

I(YS ; ŶS |ŶSc , Y ) ≤
∑
i∈S

Ri (17)

and
RC/S < I(X; ŶN , Y ). (18)

r1

s d

rn

r2

Fig. 3. A simplified multiple-relay model with digital links.

The basic idea of the compress-and-forward strategy is for the relay to compress its observations into
some approximations, which can be represented by fewer number of bits, and thus, can be forwarded
to the destination. To deal with delay at the relay, block Markov coding was used, where the total time
is divided into a sequence of blocks of equal length T , and coding is performed block by block. For
example, each relay compresses its observations of each block at the end of the block, and forwards the
approximations in the next block. Therefore, to decode the message sent by the source in any block, it is
not until the end of the next block, has the destination received the help from the relay.

The encoding process is exactly the same as that in the proof of Theorem 6 of [2]. We only emphasize
that the i-th relay needs to generate 2T (I(Yi;Ŷi)+ε) many Ŷi sequences, and randomly throws them into
2TRi bins. At the end of each block, the relay finds a Ŷi sequence which is jointly typical with the Yi
sequence it received during the block, and in the next block, inform the destination the index of the bin
that contains the Ŷi sequence.

The decoding process operates in a successive way. At the end of each block b = 2, 3, . . ., the destination
first finds, from the bins forwarded by the relays during block b, the unique combination of Ŷ1, Ŷ2, . . . , Ŷn
sequences that is jointly typical with the Y sequence received, i.e.,

(Ŷ 1(b− 1), . . . , Ŷ n(b− 1), Y (b− 1)) ∈ Aε(ŶN , Y ). (19)

Error occurs if the true Ŷ N (b− 1) does not satisfy (19), or a false Ŷ N (b− 1) satisfies (19). According
to the properties of typical sequences, the true Ŷ N (b− 1) satisfies (19) with high probability.

The probability of a false Ŷ N (b− 1) with some false {Ŷ i(b− 1), i ∈ S} but true {Ŷ i(b− 1), i ∈ Sc}
being jointly typical with Y (b− 1) can be upper bounded by

2T (H(Y,ŶN )+ε)2−T (H(Y,ŶSc )−ε)
∏
i∈S

2−T (H(Ŷi)−ε)



7

There are
∏

i∈S(2
T (I(Yi;Ŷi)−Ri+ε) − 1) false Ŷ S(b− 1) from the bins, thus the probability of finding such

a false Ŷ N (b− 1) can be upper bounded by

2T (H(Y,ŶN )+ε)2−T (H(Y,ŶSc )−ε)
∏
i∈S

2−T (H(Ŷi)−I(Yi;Ŷi)+Ri−2ε)

which tends to zero for sufficiently small ε as T →∞, if

H(ŶS |Y, ŶSc)−
∑
i∈S

[H(Ŷi|Yi) +Ri] < 0. (20)

Leting S = {ij ∈ N : j = 1, . . . , |S|}, we have∑
i∈S

H(Ŷi|Yi) =
∑

j=1,...,|S|

H(Ŷij |Yij)

=
∑

j=1,...,|S|

H(Ŷij |YS , Y, ŶSc , {Ŷi1 , . . . , Ŷij−1
})

=H(ŶS |YS , Y, ŶSc).

Plugging this into (20), we obtain (17)1.
Given that (17) is satisfied for any S ⊆ N , the destination can recover Ŷ N (b− 1) at the end of block

b. Then, based on Ŷ N (b− 1) and Y (b− 1), X(w) can be recovered if (18) holds.

B. Proof of Theorem 2.2
Similarly, we consider the simplified model as depicted in Fig. 3, where the rates (R1, R2, . . . , Rn) are

chosen based on (9). Then, (10) simplifies to

R < I(X; ŶN , Y )− I(YS ; ŶS |ŶSc , Y ) +
∑
i∈S

Ri. (21)

In cumulative encoding/joint decoding, the encoding part is exactly the same as that in the proof of
Theorem 2.1, and the decoding process operates as the following. At the end of each block b = 2, 3, . . .,
the destination finds the unique X sequence that is jointly typical with the Y sequence received during
block b − 1, and also with some Ŷ1, Ŷ2, . . . , Ŷn sequences from the bins forwarded by the relays during
block b, i.e.,

(X(w), Y (b− 1), Ŷ N (b− 1)) ∈ Aε(X, Y, Ŷ1, . . . , Ŷn). (22)

Error occurs if the true X(w) does not satisfy (22), or a false X(w′) satisfies (22). According to the
properties of typical sequences, the true X(w) satisfies (22) with high probability.

The probability of a false X(w′) being jointly typical with Y (b− 1) and some false {Ŷ i(b− 1), i ∈ S}
but true {Ŷ i(b− 1), i ∈ Sc} can be upper bounded by

2T (H(X,Y,ŶN )+ε)2−T (H(X)−ε)2−T (H(Y,ŶSc )−ε)
∏
i∈S

2−T (H(Ŷi)−ε)

There are 2TR − 1 false w′, and
∏

i∈S(2
T (I(Yi;Ŷi)−Ri+ε) − 1) false Ŷ S(b − 1) from the bins, thus the

probability of finding such a false X(w′) can be upper bounded by

2TR2T (H(X,Y,ŶN )+ε)2−T (H(X)−ε)

× 2−T (H(Y,ŶSc )−ε)
∏
i∈S

2−T (H(Ŷi)−I(Yi;Ŷi)+Ri−2ε)

which tends to zero for sufficiently small ε as T →∞, if (21) holds.

1The case of “=” can be included since (18) doesn’t include “=”. The same consideration applies throughout the paper.
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C. Optimality of Successive Decoding under Cumulative Encoding Framework
To make the proof of Theorem 2.3 easier to follow, we still consider the simplified model depicted in

Fig. 3. Then, R∗C/S and R∗C/J can be respectively written as

R∗C/S = max
p(x)

∏n
i=1 p(ŷi|yi)

I(X; ŶN , Y ) (23)

such that I(YS ; ŶS |ŶSc , Y )−
∑
i∈S

Ri ≤ 0,∀S ⊆ N , (24)

and

R∗C/J = max
p(x)

∏n
i=1 p(ŷi|yi)

min
S⊆N
{I(X; ŶN , Y )− I(YS ; ŶS |ŶSc , Y ) +

∑
i∈S

Ri}. (25)

Before proceeding to the proof of Theorem 2.3, we first introduce some useful notations and lemmas.
Let

IA,B(S) :=
∑
i∈S

Ri − I(YS ; ŶS |ŶA, ŶB\S , Y ),∀S ⊆ B, (26)

IB(S) :=I∅,B(S) =
∑
i∈S

Ri − I(YS ; ŶS |ŶB\S , Y ),∀S ⊆ B, (27)

I(S) :=IN (S) =
∑
i∈S

Ri − I(YS ; ŶS |ŶSc , Y ),∀S ⊆ N . (28)

Then, we have the following lemmas, whose proofs will be deferred until we finish the proof of Theorem
2.3.

Lemma 3.1: 1) If IA(S1) ≥ 0, ∀S1 ⊆ A, and IB(S2) ≥ 0, ∀S2 ⊆ B, then IA⋃
B(S) ≥ 0, ∀S ⊆ A

⋃
B.

2) If IA(S1) ≥ 0, ∀S1 ⊆ A, and IA,B(S2) ≥ 0, ∀S2 ⊆ B, then IA⋃
B(S) ≥ 0, ∀S ⊆ A

⋃
B.

Lemma 3.2: Under any p(x)
∏n

i=1 p(ŷi|yi), there exists a unique set D, which is the largest subset of
N satisfying

ID(S) ≥ 0,∀S ⊆ D.

Lemma 3.3: If IA,B(B) ≥ 0 for some nonempty B, then there exists some nonempty C ⊆ B such that
IA,C(S) ≥ 0,∀S ⊆ C.

Lemma 3.4: For any A and B with A
⋂
B = ∅, I(A) + I(B) = I(A

⋃
B) + I(ŶA; ŶB|Ŷ(A⋃

B)c , Y ).
We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3: We show R∗C/S = R∗C/J by showing that R∗C/S ≤ R∗C/J and R∗C/S ≥ R∗C/J
respectively. Under any p(x)

∏n
i=1 p(ŷi|yi) such that I(YS ; ŶS |ŶSc , Y ) ≤

∑
i∈S Ri, ∀S ⊆ N , we have

min
S⊆N
{I(X; ŶN , Y )− I(YS ; ŶS |ŶSc , Y ) +

∑
i∈S

Ri} = I(X; ŶN , Y ),

and thus R∗C/S ≤ R∗C/J.
To show R∗C/S ≥ R∗C/J, it is sufficient to show that R∗C/J can be achieved only with p(x)

∏n
i=1 p(ŷi|yi)

such that I(S) ≥ 0, ∀S ⊆ N . We will show this by two steps as follows: i) We first show that under
any p(x)

∏n
i=1 p(ŷi|yi), if Dc 6= ∅, then Dc ∈ argmin

S⊆N
I(S) and

⋂
T ∈argmin

S⊆N
I(S) T = Dc, where D is

defined as in Lemma 3.2 and argmin
S⊆N

I(S) := {T ⊆ N : I(T ) = minS⊆N I(S)}. ii) We then argue that ,

under the optimal p(x)
∏n

i=1 p(ŷi|yi), Dc must be ∅, i.e., D must be N , and thus by the definition of D,
I(S) ≥ 0, ∀S ⊆ N .

i) Assuming Dc 6= ∅ throughout Part i), we show Dc ∈ argmin
S⊆N

I(S) and
⋂
T ∈argmin

S⊆N
I(S) T = Dc.

1) We first show I(Dc) < 0 by using a contradiction argument. Suppose I(Dc) ≥ 0, i.e., ID,Dc(Dc) ≥ 0.
Then, by Lemma 3.3, we have that there exists some nonempty B ⊆ Dc such that ID,B(S) ≥ 0, ∀S ⊆ B.
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This will further imply, by Part 2) of Lemma 3.1, that ID⋃
B(S) ≥ 0,∀S ⊆ D

⋃
B. This is contradictory

with the definition of D, and thus I(Dc) < 0.
2) We show that ∀A ⊆ Dc and A 6= Dc, I(A) > I(Dc), and thus I(A) > minS⊆N I(S). The proof

is still by contradiction. Suppose that there exists some A ⊆ Dc and A 6= Dc such that I(A) ≤ I(Dc).
Then I(Dc)− I(A) ≥ 0, i.e.,∑

i∈Dc

Ri − I(YDc ; ŶDc |ŶD, Y )−
∑
i∈A

Ri + I(YA; ŶA|ŶAc , Y )

=
∑

i∈Dc\A

Ri − I(YDc\A; ŶDc\A|ŶD, Y )

=ID,Dc\A(Dc \ A)
≥0.

Again by Lemma 3.3 and 3.1 successively, we can conclude that there exists some nonempty B ⊆
Dc \ A, such that ID⋃

B(S) ≥ 0,∀S ⊆ D
⋃
B, which is in contradiction. Therefore, I(A) > I(Dc) ≥

minS⊆N I(S).
3) We prove that ∀A with AD 6= ∅ and ADc 6= Dc, I(A) > minS⊆N I(S). Let A1 = AD and
A2 = ADc. Then, we have, by Lemma 3.4, that

I(A) =I(A1

⋃
A2) = I(A1) + I(A2)− I(ŶA1 ; ŶA2|ŶAc , Y ),

I(A1

⋃
Dc) =I(A1) + I(Dc)− I(ŶA1 ; ŶDc |Ŷ(A1

⋃
Dc)c , Y ).

Since I(A2) > I(Dc) by 2) and

I(ŶA1 ; ŶDc|Ŷ(A1
⋃
Dc)c , Y )

=I(ŶA1 ; ŶDc\A2 |Ŷ(A1
⋃
Dc)c , Y ) + I(ŶA1 ; ŶA2|Ŷ(A1

⋃
Dc)c , ŶDc\A2 , Y )

=I(ŶA1 ; ŶA2|ŶAc , Y ) + I(ŶA1 ; ŶDc\A2 |Ŷ(A1
⋃
Dc)c , Y )

≥I(ŶA1 ; ŶA2|ŶAc , Y ),

we have I(A) > I(A1

⋃
Dc) ≥ minS⊆N I(S).

4) We prove that ∀A with AD 6= ∅ and ADc = Dc, I(A) ≥ I(Dc). Letting A1 = AD, we have

I(A) =I(A1

⋃
Dc)

=I(A1) + I(Dc)− I(ŶA1 ; ŶDc|Ŷ(A1
⋃
Dc)c , Y )

=
∑
i∈A1

Ri − I(YA1 ; ŶA1|ŶAc
1
, Y )− I(ŶA1 ; ŶDc |Ŷ(A1

⋃
Dc)c , Y ) + I(Dc)

=
∑
i∈A1

Ri − I(ŶA1 ; ŶDc , YA1|Ŷ(A1
⋃
Dc)c , Y ) + I(Dc)

=
∑
i∈A1

Ri − I(ŶA1 ;YA1|ŶD\A1 , Y ) + I(Dc)

=ID(A1) + I(Dc)
≥I(Dc).

Combining 2) - 4), we can conclude that Dc ∈ argmin
S⊆N

I(S) and
⋂
T ∈argmin

S⊆N
I(S) T = Dc.

ii) We now argue that under the optimal p(x)
∏n

i=1 p(ŷi|yi) that achieves R∗C/J, if Dc 6= ∅, then R∗C/J is
not optimal; and hence Dc must be ∅. The argument is extended from that in [5] and the detailed analysis
is as follows.
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Suppose Dc 6= ∅ at the optimum. Then, Dc ∈ argmin
S⊆N

I(S) and
⋂
T ∈argmin

S⊆N
I(S) T = Dc. Therefore,

R∗C/J =I(X; ŶN , Y ) + I(Dc)
=I(X; ŶD, Y ) + I(X; ŶDc|ŶD, Y ) +

∑
i∈Dc

Ri − I(X, YDc ; ŶDc|ŶD, Y )

=I(X; ŶD, Y ) +
∑
i∈Dc

Ri − I(YDc ; ŶDc |X, ŶD, Y ), (29)

and similarly,

R∗C/J =I(X; ŶN , Y ) + I(T )
=I(X; ŶT c , Y ) +

∑
i∈T

Ri − I(YT ; ŶT |X, ŶT c , Y ), (30)

for any T ∈ argmin
S⊆N

I(S), T 6= Dc.

We argue that higher rate can be achieved. Consider Ŷ ′1 , Ŷ
′
2 , . . . , Ŷ

′
n, where Ŷ ′i = Ŷi for any i ∈ D,

and Ŷ ′i = Ŷi with probability p and Ŷ ′i = ∅ with probability 1 − p for any i ∈ Dc. When p = 1, the
achievable rate with Ŷ ′1 , Ŷ

′
2 , . . . , Ŷ

′
n is R∗C/J. As p decreases from 1, it can be seen from (29) and (30)

that both I(X; Ŷ ′N , Y ) + I(Dc) and I(X; Ŷ ′N , Y ) + I(T ) will increase, where T ∈ argmin
S⊆N

I(S), T 6= Dc.

Thus, no matter how I(X; Ŷ ′N , Y ) + I(S) will change as p decreases for S /∈ argmin
S⊆N

I(S), it is certain

that there exists a p∗ such that the achievable rate by using Ŷ ′1 , Ŷ
′
2 , . . . , Ŷ

′
n is larger than R∗C/J. This is

in contradiction with the optimality of R∗C/J, and thus at the optimum, Dc must be ∅ , i.e., I(S) ≥ 0,
∀S ⊆ N . This completes the proof of Theorem 2.3.

Below, we summarize the proofs of Lemma 3.1-3.4.
Proof of Lemma 3.1:

For any S ⊆ A
⋃
B, let S1 = SA and S2 = S(B \ A). Then,

IA⋃
B(S) =

∑
i∈S

Ri − I(YS ; ŶS |Ŷ(A⋃
B)\S , Y )

=
∑
i∈S1

Ri − I(YS1 ; ŶS1|Ŷ(A⋃
B)\S , Y ) +

∑
i∈S2

Ri − I(YS2 ; ŶS2|Ŷ(A⋃
B)\S , ŶS1 , Y )

≥
∑
i∈S1

Ri − I(YS1 ; ŶS1|ŶA\S1 , Y ) +
∑
i∈S2

Ri − I(YS2 ; ŶS2|ŶA, ŶB\S2 , Y )

=IA(S1) + IA,B(S2) (31)
≥IA(S1) + IB(S2). (32)

If IA(S1) ≥ 0, ∀S1 ⊆ A, and IB(S2) ≥ 0, ∀S2 ⊆ B, then following (32), IA⋃
B(S) ≥ 0, ∀S ⊆ A

⋃
B.

If IA(S1) ≥ 0, ∀S1 ⊆ A, and IA,B(S2) ≥ 0, ∀S2 ⊆ B, then following (31), IA⋃
B(S) ≥ 0, ∀S ⊆ A

⋃
B.

Proof of Lemma 3.2: Let L := {F ⊆ N : IF(S) ≥ 0,∀S ⊆ F} and Lmax := {D ∈ L : |D| =
maxF∈L |F|}. Suppose there are more than one element in Lmax, say, D1,D2, . . . ,Dn, where n ≥ 2. Then
based on 1) of Lemma 3.1, D :=

⋃n
i=1Di also satisfies that ID(S) ≥ 0,∀S ⊆ D, which is in contradiction,

and hence Lemma 3.2 is proved.
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Proof of Lemma 3.3: If IA,B(S) ≥ 0, ∀S ⊆ B, then this lemma obviously holds. Otherwise, if there
exists some S1 ⊆ B, S1 6= B, such that IA,B(S1) < 0, then we have IA,B(B)− IA,B(S1) ≥ 0, i.e.,∑

i∈B

Ri − I(YB; ŶB|ŶA, Y )−

(∑
i∈S1

Ri − I(YS1 ; ŶS1|ŶA, ŶB\S1 , Y )

)
=
∑
i∈B\S1

Ri − I(YB\S1 ; ŶB\S1|ŶA, Y )

=IA,B\S1(B \ S1)
≥0.

Now, we arrive at the same situation as in the original assumption with B replaced by B \ S1. Continue
applying this argument, and we must be able to reach a nonempty C ⊆ B, such that IA,C(S) ≥ 0, ∀S ⊆ C.

Proof of Lemma 3.4: For any disjoint A and B,

I(A
⋃
B)

=
∑

i∈A
⋃
B

Ri − I(YA⋃
B; ŶA⋃

B|Ŷ(A⋃
B)c , Y )

=
∑
i∈A

Ri − I(YA⋃
B; ŶA|Ŷ(A⋃

B)c , Y ) +
∑
i∈B

Ri − I(YA⋃
B; ŶB|Ŷ(A⋃

B)c , ŶA, Y )

=
∑
i∈A

Ri − I(YA, ŶB; ŶA|Ŷ(A⋃
B)c , Y ) +

∑
i∈B

Ri − I(YB; ŶB|Ŷ(A⋃
B)c , ŶA, Y )

=
∑
i∈A

Ri − I(ŶB; ŶA|Ŷ(A⋃
B)c , Y )− I(YA; ŶA|ŶAc , Y ) +

∑
i∈B

Ri − I(YB; ŶB|ŶBc , Y )

=I(A) + I(B)− I(ŶA; ŶB|Ŷ(A⋃
B)c , Y ),

which proves the lemma.

IV. SUCCESSIVE DECODING VS. JOINT DECODING UNDER REPETITIVE ENCODING FRAMEWORK

Specializing Theorem 1 in [8] to the case of single source multiple-relay channel depicted in Fig. 2,
we readily have the achievable rate with repetitive encoding/joint decoding, as stated in Theorem 2.5.
Below, we focus on demonstrating the achievability result with repetitive encoding/successive decoding,
and establishing the optimality of successive decoding under the repetitive encoding framework.

A. Proof of Theorem 2.4
In repetitive encoding/successive decoding, the encoding process follows that in the proof of Theorem

1 in [8], but the decoding process operates in a successive way. The details are as follows.
Codebook Generation: Fix p(x)

∏n
i=1 p(xi)p(ŷi|xi, yi). Consider B+M blocks, where the source will

transmit information in the first B blocks and keep silent in the last M blocks, and M � B such that
the rate loss can be made arbitrarily small. We randomly and independently generate a codebook for each
block.

For each block b ∈ [1 : B], randomly and independently generate 2TBRR/S sequences xb(m), m ∈ [1 :
2TBRR/S ]; for each block b ∈ [1 : B] and each relay node i ∈ N , randomly and independently generate
2TR̂i sequences xi,b(li,b−1), li,b−1 ∈ [1 : 2TR̂i ], where R̂i = I(Yi; Ŷi|Xi)+ ε; for each relay node i ∈ N and
each xi,b(li,b−1), li,b−1 ∈ [1 : 2TR̂i ], randomly and conditionally independently generate 2TR̂i sequences
ŷi,b(li,b|li,b−1), li,b ∈ [1 : 2TR̂i ]. This defines the codebook for any block b ∈ [1 : B],

Cb = {xb(m),xi,b(li,b−1), ŷi,b(li,b|li,b−1) : m ∈ [1 : 2TBRR/S ], li,b, li,b−1 ∈ [1 : 2TR̂i ], i ∈ N}.
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For each block b ∈ [B + 1 : B + M ] and each relay node i ∈ N , randomly and independently
generate 2T (b−B)R̂i sequences xi,b(l

b−1
i,B ), where lb−1i,B = (li,B, . . . , li,b−1) is a b−B dimensional vector with

each component restricted to [1 : 2TR̂i ] and thus lb−1i,B ∈ [1 : 2TR̂i ]b−B; for each relay node i ∈ N and
each xi,b(l

b−1
i,B ), lb−1i,B ∈ [1 : 2TR̂i ]b−B, randomly and conditionally independently generate 2TR̂i sequences

ŷi,b(li,b|lb−1i,B ), li,b ∈ [1 : 2TR̂i ]. This defines the codebook for any block b ∈ [B + 1 : B +M ],

Cb = {xi,b(lb−1i,B ), ŷi,b(li,b|lb−1i,B ) : lb−1i,B ∈ [1 : 2TR̂i ]b−B, li,b ∈ [1 : 2TR̂i ], i ∈ N}.

Encoding: Let m be the message to be sent. For any block b ∈ [1 : B], each relay node i ∈ N ,
upon receiving yi,b at the end of block b, finds an index li,b such that (ŷi,b(li,b|li,b−1),yi,b,xi,b(li,b−1)) ∈
A

(n)
ε (Xi, Yi, Ŷi), where li,0 = 1 by convention. The codewords xb(m) and xi,b(li,b−1), i ∈ N are transmitted

in block b, b ∈ [1 : B].
After block B, the source node will be silent and the relay nodes will use additional M blocks to

cooperatively transmit (l1,B, . . . , ln,B) to the destination. Specifically, for any block b ∈ [B + 1 : B +
M ], each relay node i ∈ N , upon receiving yi,b at the end of block b, finds an index li,b such that
(ŷi,b(li,b|lb−1i,B ),yi,b,xi,b(l

b−1
i,B )) ∈ A(n)

ε (Xi, Yi, Ŷi). The codeword xi,b(l
b−1
i,B ), i ∈ N is transmitted in block b,

b ∈ [B + 1 : B +M ].
Decoding: i) The destination first finds a unique combination of the relays’ compression indices

lB = (l1, . . . , lB) and some lB+M
B+1 = (lB+1, . . . , lB+M), where lb = (l1,b, . . . , ln,b), ∀b ∈ [1 : B +M ], such

that for any b = 1, . . . , B,(
(X1,b(l1,b−1), Ŷ1,b(l1,b|l1,b−1)), . . . , (Xn,b(ln,b−1), Ŷn,b(ln,b|ln,b−1)),Yb

)
∈ A(n)

ε (XN , ŶN , Y ), (33)

and for any b = B + 1, . . . , B +M ,(
(X1,b(l

b−1
1,B ), Ŷ1,b(l1,b|lb−11,B )), . . . , (Xn,b(l

b−1
n,B), Ŷn,b(ln,b|lb−1n,B)),Yb

)
∈ A(n)

ε (XN , ŶN , Y ). (34)

Specifically, this can be done backwards as follows:
a) The destination finds the unique lB such that there exists some lB+M

B+1 = (lB+1, . . . , lB+M) satisfying
(34) for any b = B + 1, . . . , B +M .

Assume the true lB+M
B = 1M+1. Then, error occurs if lB = 1 does not satisfy (34) with any lB+M

B+1 for
any b = B+1, . . . , B+M , or a false lB 6= 1 satisfies (34) with some lB+M

B+1 for any b = B+1, . . . , B+M .
Since lB+M

B = 1M+1 satisfies (34) for any b = B + 1, . . . , B +M with high probability according to the
properties of typical sequences, we only need to bound Pr(

⋃
lB 6=1 ElB), where ElB is defined as the event

that lB satisfies (34) with some lB+M
B+1 for any b = B + 1, . . . , B +M . For any lbB, define Ab(lbB) as the

event that lbB satisfies (34). Then, we have

Pr(
⋃
lB 6=1

ElB) =Pr(
⋃
lB 6=1

⋃
lB+M
B+1

B+M⋂
b=B+1

Ab(lbB))

≤
∑
lB 6=1

∑
lB+M
B+1

Pr(
B+M⋂
b=B+1

Ab(lbB))

=
∑
lB 6=1

∑
lB+M
B+1

B+M∏
b=B+1

Pr(Ab(lbB))

=
∑
lB+M

∑
lB+M−1
B+1

∑
lB 6=1

B+M∏
b=B+1

Pr(Ab(lbB)). (35)
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For any lB+M
B , let Sb(lB+M

B ) = {i ∈ N : lb−1i,B 6= 1b−B}. Note Sb(lB+M
B ) only depends on lb−1B , so we

write it as Sb(lb−1B ). Define Xb(Sb(lb−1B )) as {Xi,b(l
b−1
i,B ), i ∈ Sb(lb−1B )}, and similarly define Yb(Sb(lb−1B ))

and Ŷb(Sb(lb−1B )). Then, (Xb(Sb(lb−1B )), Ŷb(Sb(lb−1B ))) is independent of (Xb(Scb (lb−1B )), Ŷb(Scb (lb−1B )),Yb)),
and Pr(Ab(lbB)) can be upper bounded by

2T (H(XN ,ŶN ,Y )+ε)2
−T (H(X

Sc
b
(lb−1
B

)
,Ŷ
Sc
b
(lb−1
B

)
,Y )−ε)

2
−T (H(X

Sb(l
b−1
B

)
)−ε)

2
−T (

∑
i∈Sb(l

b−1
B

)
(H(Ŷi|Xi)−ε))

=:2−T (I(Sb(l
b−1
B ))−ε′)

where I(Sb(lb−1B )) = I(XSb(lb−1
B ); ŶScb (l

b−1
B ), Y |XScb (lb−1

B ))−H(ŶSb(lb−1
B )|XN , ŶScb (lb−1

B ), Y )+
∑

i∈Sb(lb−1
B )H(Ŷi|Xi)

and ε′ → 0 as ε→ 0. Then, following (35), we have

Pr(
⋃
lB 6=1

ElB) ≤
∑
lB+M

∑
lB+M−1
B+1

∑
lB 6=1

B+M∏
b=B+1

Pr(Ab(lbB))

≤
∑
lB+M

∑
lB+M−1
B+1

∑
lB 6=1

B+M∏
b=B+1

2−T (I(Sb(l
b−1
B ))−ε′)

≤
∑
lB+M

∑
SB+1, . . . ,SB+M :

SB+1 6= ∅,SB+1 ⊆ SB+2 · · · ⊆ SB+M

∑
lB+M−1
B :

Sb(lB+M−1
B ) = Sb,∀b ∈ [B + 1 : B +M ]

B+M∏
b=B+1

2−T (I(Sb(l
b−1
B ))−ε′)

≤
∑
lB+M

∑
SB+1, . . . ,SB+M :

SB+1 6= ∅,SB+1 ⊆ SB+2 · · · ⊆ SB+M

B+M∏
b=B+1

2T (
∑

i∈Sb
(I(Yi;Ŷi|Xi)+ε))

B+M∏
b=B+1

2−T (I(Sb)−ε
′)

≤
∑
lB+M

∑
SB+1, . . . ,SB+M :

SB+1 6= ∅,SB+1 ⊆ SB+2 · · · ⊆ SB+M

B+M∏
b=B+1

2
−T (I(XSb ;ŶScb ,Y |XScb )−I(YSb ;ŶSb |XN ,Y,ŶScb )−ε

′′)

≤
∑
lB+M

∑
SB+1, . . . ,SB+M :

SB+1 6= ∅,SB+1 ⊆ SB+2 · · · ⊆ SB+M

2
−T

∑B+M
b=B+1(I(XSb ;ŶScb

,Y |XSc
b
)−I(YSb ;ŶSb |XN ,Y,ŶScb )−ε

′′)

≤
∑
lB+M

(2n)M2−TM(minS⊆N :S6=∅{I(XS ;ŶSc ,Y |XSc )−I(YS ;ŶS |XN ,Y,ŶSc )−ε′′})

≤2T (
∑

i∈N (I(Ŷi;Yi|Xi)+ε))2nM2−TM(minS⊆N :S6=∅{I(XS ;ŶSc ,Y |XSc )−I(YS ;ŶS |XN ,Y,ŶSc )−ε′′})

where ε′′ → 0 as ε→ 0. Thus, as both T and M go to infinity, Pr(
⋃

lB 6=1 ElB)→ 0 if I(XS ; ŶSc , Y |XSc)−
I(YS ; ŶS |XN , Y, ŶSc) > 0, for any nonempty S ⊆ N .

b) Backwards and sequentially from block b = B to block b = 2, the destination finds the unique lb−1,
such that (lb−1, lb) satisfies (33), where lb has already been recovered due to the backwards property of
decoding.

At each block b = B,B − 1, . . . , 2, error occurs if the true lb−1 does not satisfy (33), or a false lb−1
satisfies (33). According to the properties of typical sequences, the true lb−1 satisfies (33) with high
probability.

For a false lb−1 with false {li,b−1, i ∈ S} but true {li,b−1, i ∈ Sc}, (Xb(S), Ŷb(S)) is independent of
(Xb(Sc), Ŷb(Sc),Yb), and the probability that (lb−1, lb) satisfies (33) can be upper bounded by

2T (H(XN ,ŶN ,Y )+ε)2−T (H(XSc ,ŶSc ,Y )−ε)2−T (H(XS)−ε)2−T (
∑

i∈S(H(Ŷi|Xi)−ε)).
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Since the number of such false lb−1 is upper bounded by
∏

i∈S 2
T (I(Yi;Ŷi|Xi)+ε), with the union bound, it is

easy to check that the probability of finding such a false lb−1 goes to zero as T →∞, if I(XS ; ŶSc , Y |XSc)−
I(YS ; ŶS |XN , Y, ŶSc) > 0, for any nonempty S ⊆ N .

Combining a) and b), we can conclude that lB can be decoded if for any nonempty S ⊆ N ,

I(XS ; ŶSc , Y |XSc)− I(YS ; ŶS |XN , Y, ŶSc) > 0.

ii) Then, based on the recovered lB, the destination finds the unique m such that for any b = 1, . . . , B,(
Xb(m), (X1,b(l1,b−1), Ŷ1,b(l1,b|l1,b−1)), . . . , (Xn,b(ln,b−1), Ŷn,b(ln,b|ln,b−1)),Yb

)
∈ A(n)

ε (X,XN , ŶN , Y ).

(36)

Obviously, the probability of decoding error will tend to zero if RR/S < I(X; ŶN , Y |XN ).
�

Remark 4.1: It should be noted that in the proof of Theorem 2.4, our encoding process is not exactly
the same as that in [8]. We add M blocks at the end, during which, the relays encode with memory
of the previous blocks, i.e., trying to forward lb−1i,B instead of li,b−1 alone. This ensures that li,B can be
decoded with the help of the subsequent blocks. Then backwardly, all previous li,B−1, li,B−2, . . . , li,1 can
be decoded.

Remark 4.2: It is interesting to point out that in the proof of Theorem 2.4, repetitive encoding can
be replaced by cumulative encoding, while the same rate can be achieved. Specifically, the source can
transmit the message vector (m1,m2, . . . ,mB) in the first B blocks and the destination finds the unique
message vector (m1,m2, . . . ,mB) such that for any b = 1, . . . , B,(
Xb(mb), (X1,b(l1,b−1), Ŷ1,b(l1,b|l1,b−1)), . . . , (Xn,b(ln,b−1), Ŷn,b(ln,b|ln,b−1)),Yb

)
∈ A(n)

ε (X,XN , ŶN , Y ).

(37)

One can easily check that all the above analysis still applies. Hence, when the relays encode with memory
of previous blocks, collaboration among the blocks is introduced, which has the same effect of improving
the achievable rate as using repetitive encoding.

B. Optimality of Successive Decoding under Repetitive Encoding Framework
The proof of Theorem 2.6 is analogous to that of Theorem 2.3. Some useful notations and lemmas

paralleled with those in III-C are as follows. The proofs of these lemmas are deferred until we finish the
proof of Theorem 2.6.

Let

JA,B(S) :=I(XS ; ŶB\S , ŶA, Y |XA, XB\S)− I(YS ; ŶS |XA, ŶA, Y,XB, ŶB\S),∀S ⊆ B, (38)

JB(S) :=J∅,B(S) = I(XS ; ŶB\S , Y |XB\S)− I(YS ; ŶS |XB, ŶB\S , Y ),∀S ⊆ B, (39)

J(S) :=JN (S) = I(XS ; ŶSc , Y |XSc)− I(YS ; ŶS |XN , Y, ŶSc),∀S ⊆ N . (40)

Lemma 4.1: 1) If JA(S1) ≥ 0, ∀S1 ⊆ A, and JB(S2) ≥ 0, ∀S2 ⊆ B, then JA⋃
B(S) ≥ 0, ∀S ⊆ A

⋃
B.

2) If JA(S1) ≥ 0, ∀S1 ⊆ A, and JA,B(S2) ≥ 0, ∀S2 ⊆ B, then JA⋃
B(S) ≥ 0, ∀S ⊆ A

⋃
B.

Lemma 4.2: Under any p(x)
∏n

i=1 p(xi)p(ŷi|xi, yi), there exists a unique set D, which is the largest
subset of N satisfying

JD(S) ≥ 0,∀S ⊆ D.

Lemma 4.3: If JA,B(B) ≥ 0 for some nonempty B, then there exists some nonempty C ⊆ B such that
JA,C(S) ≥ 0,∀S ⊆ C.
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Lemma 4.4: For any A and B with A
⋂
B = ∅, J(A) + J(B) = J(A

⋃
B) + J(A ◦ B), where

J(A ◦ B) =I(XA, ŶA;XB, ŶB|X(A
⋃
B)c , Ŷ(A

⋃
B)c , Y )

=I(XA;XB|X(A
⋃
B)c , Ŷ(A⋃

B)c , Y ) + I(XA; ŶB|XAc , Ŷ(A
⋃
B)c , Y )

+ I(XB; ŶA|XBc , Ŷ(A⋃
B)c , Y ) + I(ŶA; ŶB|XN , Ŷ(A⋃

B)c , Y )

We are now ready to present the proof of Theorem 2.6.
Proof of Theorem 2.6: R∗R/S and R∗R/J can be respectively written as

R∗R/S = max
p(x)

∏n
i=1 p(xi)p(ŷi|xi,yi)

I(X; ŶN , Y |XN ) (41)

such that J(S) ≥ 0, ∀S ⊆ N , (42)

and

R∗R/J = max
p(x)

∏n
i=1 p(xi)p(ŷi|xi,yi)

min
S⊆N
{I(X; ŶN , Y |XN ) + J(S)}. (43)

To show R∗R/S = R∗R/J, it is sufficient to show that R∗R/J can be achieved only with p(x)
∏n

i=1 p(xi)p(ŷi|xi, yi)
such that J(S) ≥ 0, ∀S ⊆ N . Similarly to the proof of Theorem 2.3, this can be proved by two steps
and the details are as follows.

i) We first show that under any p(x)
∏n

i=1 p(xi)p(ŷi|xi, yi), if Dc 6= ∅, then Dc ∈ argmin
S⊆N

J(S) and⋂
T ∈argmin

S⊆N
J(S) T = Dc, where D is defined as in Lemma 4.2 and argmin

S⊆N
J(S) := {T ⊆ N : J(T ) =

minS⊆N J(S)}.
1) We first show J(Dc) < 0 by using a contradiction argument. Suppose J(Dc) ≥ 0, i.e., JD,Dc(Dc) ≥ 0.

Then, by Lemma 4.3, we have that there exists some nonempty B ⊆ Dc such that JD,B(S) ≥ 0, ∀S ⊆ B.
This will further imply, by Part 2) of Lemma 4.1, that JD⋃

B(S) ≥ 0,∀S ⊆ D
⋃
B. This is contradictory

with the definition of D, and thus J(Dc) < 0.
2) We show that ∀A ⊆ Dc and A 6= Dc, J(A) > J(Dc), and thus J(A) > minS⊆N J(S). The proof

is still by contradiction. Suppose that there exists some A ⊆ Dc and A 6= Dc such that J(A) ≤ J(Dc).
Then J(Dc)− J(A) ≥ 0, i.e.,

I(XDc ; ŶD, Y |XD)− I(YDc ; ŶDc|XN , Y, ŶD)− I(XA; ŶAc , Y |XAc) + I(YA; ŶA|XN , Y, ŶAc)

=I(XDc\A; ŶD, Y |XD) + I(XA; ŶD, Y |XAc)− I(YDc\A; ŶDc\A|XN , Y, ŶD)− I(YA; ŶA|XN , Y, ŶAc)

− I(XA; ŶD, Y |XAc)− I(XA; ŶDc\A|ŶD, Y,XAc) + I(YA; ŶA|XN , Y, ŶAc)

=I(XDc\A; ŶD, Y |XD)−H(ŶDc\A|XN , Y, ŶD) +H(ŶDc\A|YDc\A, XN , Y, ŶD)

−H(ŶDc\A|ŶD, Y,XAc) +H(ŶDc\A|XA, ŶD, Y,XAc)

=I(XDc\A; ŶD, Y |XD)− I(YDc\A; ŶDc\A|XD, XDc\A, Y, ŶD)

=JD,Dc\A(Dc \ A)
≥0.

Again by Lemma 4.3 and 4.1 successively, we can conclude that there exists some nonempty B ⊆
Dc \ A, such that JD⋃

B(S) ≥ 0,∀S ⊆ D
⋃
B, which is in contradiction. Therefore, J(A) > J(Dc) ≥

minS⊆N J(S).
3) We prove that ∀A with AD 6= ∅ and ADc 6= Dc, J(A) > J(A

⋃
Dc) ≥ minS⊆N J(S). Let A1 = AD

and A2 = ADc. Then, we have, by Lemma 4.4, that

J(A) =J(A1

⋃
A2) = J(A1) + J(A2)− J(A1 ◦ A2)

J(A1

⋃
Dc) =J(A1) + J(Dc)− J(A1 ◦ Dc).
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Since I(A2) > I(Dc) by 2), to show J(A) > J(A
⋃
Dc) ≥ minS⊆N J(S), we only need to show

J(A1 ◦ A2) ≤ J(A1 ◦ Dc). Let A3 = Dc \ A2. Then, we have

J(A1 ◦ Dc)− J(A1 ◦ A2)

=I(XA1 ;XA2∪A3 |X(A1∪A2∪A3)c , Ŷ(A1∪A2∪A3)c , Y ) + I(XA1 ; ŶA2∪A3|XAc
1
, Ŷ(A1∪A2∪A3)c , Y )

+ I(XA2∪A3 ; ŶA1|X(A2∪A3)c , Ŷ(A1∪A2∪A3)c , Y ) + I(ŶA1 ; ŶA2∪A3 |XN , Ŷ(A1∪A2∪A3)c , Y )

− I(XA1 ;XA2|X(A1∪A2)c , Ŷ(A1∪A2)c , Y )− I(XA1 ; ŶA2|XAc
1
, Ŷ(A1∪A2)c , Y )

− I(XA2 ; ŶA1|XAc
2
, Ŷ(A1∪A2)c , Y )− I(ŶA1 ; ŶA2 |XN , Ŷ(A1∪A2)c , Y )

=I(XA1 ;XA3|X(A1∪A2∪A3)c , Ŷ(A1∪A2∪A3)c , Y ) + I(XA1 ;XA2 , ŶA3|X(A1∪A2)c , Ŷ(A1∪A2∪A3)c , Y )

+ I(XA3 ; ŶA1|X(A2∪A3)c , Ŷ(A1∪A2∪A3)c , Y ) + I(ŶA1 ;XA2 , ŶA3|XAc
2
, Ŷ(A1∪A2∪A3)c , Y )

− I(XA1 ;XA2|X(A1∪A2)c , Ŷ(A1∪A2)c , Y )− I(XA2 ; ŶA1|XAc
2
, Ŷ(A1∪A2)c , Y )

=I(XA1 ;XA3|X(A1∪A2∪A3)c , Ŷ(A1∪A2∪A3)c , Y ) + I(XA1 ; ŶA3|X(A1∪A2)c , Ŷ(A1∪A2∪A3)c , Y )

+ I(XA3 ; ŶA1|X(A2∪A3)c , Ŷ(A1∪A2∪A3)c , Y ) + I(ŶA1 ; ŶA3|XAc
2
, Ŷ(A1∪A2∪A3)c , Y )

≥0.

Thus, we have J(A) > J(A1

⋃
Dc) ≥ minS⊆N J(S).

4) We prove that ∀A with AD 6= ∅ and ADc = Dc, J(A) ≥ J(Dc). Letting A1 = AD, we have

J(A) = J(A1

⋃
Dc) = J(A1) + J(Dc)− J(A1 ◦ Dc).

Thus, to show J(A) ≥ J(Dc), we only need to show J(A1)− J(A1 ◦ Dc) ≥ 0. For this, we have

J(A1)− J(A1 ◦ Dc)
=I(XA1 ; ŶDc , ŶD\A1 , Y |XDc , XD\A1)− I(YA1 ; ŶA1|XN , Y, ŶDc , ŶD\A1)

− I(XA1 , ŶA1 ;XDc , ŶDc |XD\A1 , ŶD\A1 , Y )

=I(XA1 ;XDc , ŶDc , ŶD\A1 , Y |XD\A1)− I(YA1 ; ŶA1|XN , Y, ŶDc , ŶD\A1)

− I(XA1 ;XDc , ŶDc|XD\A1 , ŶD\A1 , Y )− I(ŶA1 ;XDc , ŶDc|XD, ŶD\A1 , Y )

=I(XA1 ; ŶD\A1 , Y |XD\A1)− I(ŶA1 ;XDc , ŶDc , YA1|XD, ŶD\A1 , Y )

=JD(A1)

≥0,

and thus J(A) ≥ J(Dc).
Combining 2) - 4), we can conclude that Dc ∈ argmin

S⊆N
J(S) and

⋂
T ∈argmin

S⊆N
J(S) T = Dc.

ii) Applying exactly the same argument as in Part ii) of the proof of Theorem 2.3, we can obtain that,
at the optimum, Dc must be ∅, i.e., D must be N , and thus by the definition of D, J(S) ≥ 0,∀S ⊆ N .

Below, we summarize the proofs of Lemmas 4.1-4.4.
Proof of Lemma 4.1:
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For any S ⊆ A
⋃
B, let S1 = SA and S2 = S(B \ A). Then,

JA⋃
B(S) =I(XS ; Ŷ(A∪B)\S , Y |X(A∪B)\S)− I(YS ; ŶS |XA∪B, Ŷ(A∪B)\S , Y )

=I(XS1 ; Ŷ(A∪B)\S , Y |X(A∪B)\S) + I(XS2 ; Ŷ(A∪B)\S , Y |XS1 , X(A∪B)\S)

− I(YS1 ; ŶS1|XA∪B, Ŷ(A∪B)\S , Y )− I(YS2 ; ŶS2|XA∪B, ŶS1 , Ŷ(A∪B)\S , Y )

=I(XS1 ; Ŷ(A∪B)\S , Y |X(A∪B)\S) + I(XS2 ; Ŷ(A∪B)\S , Y |XS1 , X(A∪B)\S)

− [I(YS1 ; ŶS1|XA, ŶA\S1 , Y )− I(ŶS1 ;XB\A, ŶBAc\S2|XA, ŶA\S1 , Y )]

− I(YS2 ; ŶS2|XA∪B, ŶS1 , Ŷ(A∪B)\S , Y )

=[I(XS1 ; Ŷ(A∪B)\S , Y |X(A∪B)\S)− I(YS1 ; ŶS1|XA, ŶA\S1 , Y )]

+ [I(XS2 ; Ŷ(A∪B)\S , Y |XS1 , X(A∪B)\S) + I(ŶS1 ;XB\A, ŶBAc\S2|XA, ŶA\S1 , Y )]

− I(YS2 ; ŶS2|XA, XB, ŶA, ŶB\S2 , Y )

≥[I(XS1 ; ŶA\S1 , Y |XA\S1)− I(YS1 ; ŶS1|XA, ŶA\S1 , Y )]

+ [I(XS2 ; Ŷ(A∪B)\S , Y |XS1 , X(A∪B)\S) + I(ŶS1 ;XB\A, ŶBAc\S2|XA, ŶA\S1 , Y )]

− I(YS2 ; ŶS2|XA, XB, ŶA, ŶB\S2 , Y )

=[I(XS2 ; Ŷ(A∪B)\S , Y |XS1 , X(A∪B)\S) + I(ŶS1 ;XS2 , XBAc\S2 , ŶBAc\S2|XA, ŶA\S1 , Y )]

− I(YS2 ; ŶS2|XA, XB, ŶA, ŶB\S2 , Y ) + JA(S1)
≥[I(XS2 ; Ŷ(A∪B)\S , Y |XA, XB\S2) + I(ŶS1 ;XS2 |XA, XBAc\S2 , ŶBAc\S2 , ŶA\S1 , Y )]

− I(YS2 ; ŶS2|XA, XB, ŶA, ŶB\S2 , Y ) + JA(S1)
=I(XS2 ; ŶA, ŶB\S2 , Y |XA, XB\S2)− I(YS2 ; ŶS2|XA, XB, ŶA, ŶB\S2 , Y ) + JA(S1)
=JA(S1) + JA,B(S2) (44)
≥JA(S1) + JB(S2). (45)

If JA(S1) ≥ 0, ∀S1 ⊆ A, and JB(S2) ≥ 0, ∀S2 ⊆ B, then following (45), JA⋃
B(S) ≥ 0, ∀S ⊆ A

⋃
B.

If JA(S1) ≥ 0, ∀S1 ⊆ A, and JA,B(S2) ≥ 0, ∀S2 ⊆ B, then following (44), JA⋃
B(S) ≥ 0, ∀S ⊆ A

⋃
B.

Proof of Lemma 4.2: Let L := {F ⊆ N : JF(S) ≥ 0,∀S ⊆ F} and Lmax := {D ∈ L : |D| =
maxF∈L |F|}. Suppose there are more than one elements in Lmax, say, D1,D2, . . . ,Dn, where n ≥ 2.
Then based on 1) of Lemma 4.1, D :=

⋃n
i=1Di also satisfies that JD(S) ≥ 0,∀S ⊆ D, which is in

contradiction, and hence Lemma 4.2 is proved.
Proof of Lemma 4.3: If JA,B(S) ≥ 0, ∀S ⊆ B, then this lemma obviously holds. Otherwise, if there

exists some S1 ⊆ B, S1 6= B, such that JA,B(S1) < 0, then we have JA,B(B)− JA,B(S1) ≥ 0, i.e.,

I(XB; ŶA, Y |XA)− I(YB; ŶB|XA, ŶA, Y,XB)
− I(XS1 ; ŶB\S1 , ŶA, Y |XA, XB\S1) + I(YS1 ; ŶS1|XA, ŶA, Y,XB, ŶB\S1)

=I(XB\S1 ; ŶA, Y |XA) + I(XS1 ; ŶA, Y |XA, XB\S1)
− I(YB\S1 ; ŶB\S1|XA, ŶA, Y,XB)− I(YS1 ; ŶS1 |XA, ŶA, Y,XB, ŶB\S1)
− I(XS1 ; ŶA, Y |XA, XB\S1)− I(XS1 ; ŶB\S1|ŶA, Y,XA, XB\S1) + I(YS1 ; ŶS1|XA, ŶA, Y,XB, ŶB\S1)

=I(XB\S1 ; ŶA, Y |XA)− I(YB\S1 ; ŶB\S1|ŶA, Y,XA, XB\S1)
=JA,B\S1(B \ S1)
≥0.

Now, we arrive at the same situation as in the original assumption with B replaced by B \ S1. Continue
applying this argument, and we must be able to reach a nonempty C ⊆ B, such that JA,C(S) ≥ 0, ∀S ⊆ C.
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Proof of Lemma 4.4: For any disjoint A and B,

J(A ◦ B)
=J(A) + J(B)− J(A ∪ B)
=I(XA; ŶAc , Y |XAc)− I(YA; ŶA|XN , Y, ŶAc)

+ I(XB; ŶBc , Y |XBc)− I(YB; ŶB|XN , Y, ŶBc)
− I(XB; Ŷ(A∪B)c , Y |X(A∪B)c)− I(XA; Ŷ(A∪B)c , Y |XAc)

+ I(YA; ŶA|XN , Y, Ŷ(A∪B)c) + I(YB; ŶB|XN , Y, ŶBc)
=I(XA; ŶB|XAc , Ŷ(A∪B)c , Y ) + I(XB;XA, ŶA|X(A∪B)c , Ŷ(A∪B)c , Y ) + I(ŶA; ŶB|XN , Y, Ŷ(A∪B)c)
=I(XA, ŶA; ŶB|XAc , Ŷ(A∪B)c , Y ) + I(XB;XA, ŶA|X(A∪B)c , Ŷ(A∪B)c , Y )

=I(XB, ŶB;XA, ŶA|X(A∪B)c , Ŷ(A∪B)c , Y ),

which proves the lemma.
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