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H I G H L I G H T S

• Energy consumption of homes with and without swimming pools is analyzed.

• A modified weighted difference change-point model is proposed.

• Circulating pumps of residential swimming pools contributes 8.79% peak load.

• Considering minimizing the peak load, the peak load can be reduced by 4.64%.

• Considering minimizing the cost, the peak load can be reduced by 3.15%.
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A B S T R A C T

Peak load shaving is a very important issue, however, most of peak load shaving methods either require extra
investments or reduce the comfort of the consumers. This paper analyzes the impact of circulating pumps of
residential swimming pools on the peak load, and shows that shifting the active time of circulating pumps of
residential swimming pools could shave the peak load without requiring extra investments or reducing the
comfort of the consumers. First, based on an extensive dataset containing hourly energy consumption readings of
1005 residents during March 2011 and October 2012 in South Ontario, this paper analyzes the features of the
energy consumptions of residents with and without swimming pools. Second, this paper proposes a novel non-
intrusive appliance load monitoring method to estimate the energy consumption of circulating pumps of re-
sidential swimming pools. The advantages of the proposed method are that, compared with other non-intrusive
appliance load monitoring methods, it does not require high sampling rate data or prior information of the
appliance, therefore the cost of implementation is reduced and users’ privacy is protected. Finally, this paper
shows that, the average hourly energy consumption of CPRSP is 0.7429 kWh. During the peak hour, circulating
pumps of residential swimming pools contributes 20.11% energy consumption of residents with swimming
pools, as well as 8.79% peak load of all neighborhoods. When considering minimizing the peak load, by post-
poning circulating pumps of residential swimming pools for 8 h rather than turn them off, the peak load can be
shaved by 4.64%. When considering minimizing the cost of circulating pumps of residential swimming pools, the
peak load can be shaved by 3.15% by postponing circulating pumps of residential swimming pools for 6 h,
meanwhile the peak hour is postponed from 18:00 to 19:00.

1. Introduction

For an electric power system, as storage of electricity is much more
difficult than other energy resources such as oil and gas, the volume of
electricity produced in the supply side is mainly in accordance to the
need in the demand side [1]. The load on an electric power system is
time-variant, and to avoid issues such as brownouts, electricity

producers have to provide power in response to immediate demand on
the demand side. The maximum possible load is referred as peak load,
which usually happens in the late afternoon in summer when many
people go back home and begin using appliances for cooling, cooking
and lighting, etc. [2]. Peak load is less common in cold weather, as
people can use more types of resources such as gas and oil for heating. A
high peak load does not only increases the infrastructure cost and the
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power generation cost, but also increases carbon emission and the
maintenance cost of transmission lines and equipment, therefore peak
load shaving is an very important issue [3].

Peak load shaving can be achieved both on the supply side and the
demand side. On the supply side, to shave the peak load, methods such
as direct load control [4,5], emergency demand response [6,7], critical
peak pricing [8], and real time pricing [8,9] are usually used. While on
the demand side, to shave peak load, methods such as renewable energy
[10,11] and electric energy storage [12,13] have been widely studied.
A major difficulty of peak load shaving is that, consumers may be un-
willing to participate in some of these programs. For example, direct
load control allows the power supplier directly control the status of
appliances, and customers will receive various payments as rewards.
Direct load control is an effective method for peak load shaving, how-
ever, for example, in the Texas reliability entity region in the United
States, only 0.11% customers enrolled in direct load control [14]. The
main reason may be that, from consumers psychology perspective, di-
rect load control may disrupt their lifestyle and comfort. Meanwhile, for
peak load shaving on the demand side, extra investment is an obstacle
for renewable energy and electric energy storage.

This paper analyzes the impact of residential swimming pools on the
energy consumption of homes based on hourly meter readings, as well
as how much the peak load can be shaved by shifting load of circulating
pumps of residential swimming pools (CPRSP), rather than turn them
off. The reasons of this study are that, first, residential swimming pools
have been widely installed in developed countries. In the USA, the
number of residential swimming pools is over five million, and over the
last 10 years, the number is growing by 4% every year [15]. In the
greater Sydney region in Australia, 23% homes have residential pool
pumps [16]. Second, in many developed countries, residential swim-
ming pools are the second largest electrical load of residents, right after
air conditioners (ACs). In the USA, every year nearly 14 billion kW h
electricity is used to maintain swimming pools, and homes with
swimming pools consume an average of 50% more electricity than
homes without swimming pools [15] during the summer season. Third,
as CPRSP are used for pool water circulation and purification, com-
pared with direct load control or electric energy storage, controlling the
activity periods of CPRSP would not reduce user comfort. Furthermore,
it does not require any extra investment. Therefore, shaving peak load
by controlling the activity periods of CPRSP is practical.

Based on an extensive dataset has been setup containing hourly
energy consumption readings of 1005 residents during March 2011 and

October 2012 in South Ontario, Canada, this paper analyzes the energy
consumption of CPRSP and its impact on the peak load. The contribu-
tions of this paper can be summarised as follows:

First, features of the energy consumption of homes with and without
swimming pools are analyzed, and it is found that:

1. Although hourly energy consumptions of some homes with swim-
ming pools are less than that of homes without the swimming pools,
the average daily energy consumptions of homes with swimming
pools are greater than that of homes without the swimming pool.
The peak ratio of them is 1.699 in August and the valley ratio is
1.180 in January.

2. Although the average daily energy consumption profiles of homes
with and without the swimming pools jitter all the time, especially
when the outdoor temperature is in a high level, the difference
profile between them is much more smooth and presents a obvious
periodicity.

3. For the average daily energy consumption profiles of homes with
and without the swimming pools, as well as their difference, their
correlations with the outdoor temperature vary with the outdoor
temperature, however such correlations are significant only during
the summer season (June, July and August).

4. During all season, the average daily energy consumption profiles of
homes without the swimming pool has a stronger correlation with
the outdoor temperature than that of homes with swimming pools.

5. there is no obvious difference between the energy-related living
habits of home with and without swimming pools, e.g., the time of
getting up and the time of the main energy-related family activities.

6. the main energy-related family activities during the summer are 2 h
earlier than that during other seasons. However, the getting up time
during all season is consistent, i.e. between hour 5 and hour 6.

Second, this paper proposes a non-intrusive energy consumption
estimation method WDCP∗ for CPRSP. The advantages of the proposed
method are that it does not require high sampling rate data or prior
information of the appliance, therefore the cost of implementation is
reduced and users’ privacy is protected. Applying the proposed method
on the dataset, this paper shows that:

1. The average hourly energy consumption of CPRSP is 0.7429 kWh,
and the minimum and the maximum hourly energy consumptions
are 0.4970 kW h at 9:00 and 0.9974 kWh at 17:00, respectively.

Nomenclature

ACs air conditioners
CPRSP circulating pumps of residential swimming pools
WDCP weighted difference change-point
NIALM non-intrusive appliance load monitoring
IALM intrusive appliance load monitoring
EvOT energy consumption vs. outdoor temperature
RPT the reference point temperature
Φ the non-swimming season, between Nov. 15, 2011 and

Feb. 29, 2012, during which all swimming pools are ex-
pected to be closed

Ω the swimming season, between Jul. 1, 2011 and Aug. 30,
2011, as well as between Jul. 1, 2012 and Aug. 30, 2012,
during which all swimming pools are expected to be
opened

A the aggregated energy consumption
B base load
N the temperature-independent energy consumption
T the temperature-dependent energy consumption
E the CPRSP energy consumption

AΔ = −A A AΔ p n where Ap and An are aggregated energy
consumption of homes with and without swimming pools

L the low level period of AΔ
U the ascending period of AΔ
H the high level period of AΔ
D the descending period of AΔ

Superscripts

p data from homes with swimming pool
n data from homes without the swimming pool

Subscripts

Φ data during the non-swimming season
Ω data during the swimming season
L data during the low level period of AΔ
U data during the ascending period of AΔ
H data during the high level period of AΔ
D data during the descending period of AΔ
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2. During the peak hour, CPRSP contributes 20.11% energy con-
sumption of residents with swimming pools, as well as 8.79% peak
load of all neighborhoods.

3. When considering minimizing the peak load, by postponing CPRSP
for 8 h rather than turn them off, the peak load can be shaved by
4.64%. When considering minimizing the cost of CPRSP, the peak
load can be shaved by 3.15% by postponing CPRSP for 6 h, mean-
while the peak hour is postponed from 18:00 to 19:00.

The remainder of this paper is organized as follows. Related works
and materials are presented in Section 2 and Section 3. In Section 4,
features of the energy consumption of homes with and without swim-
ming pools are analyzed. In Section, a non-intrusive energy consump-
tion estimation method WDCP∗ for CPRSP is proposed, and results and
discussion are given in Section 6. Finally, Section 7 gives the conclu-
sion.

2. Related works

From a global perspective, the total household energy consumption
is very huge, which accounts for about 30% of the global energy con-
sumption [17,18]. At present many homes in developed countries have
residential swimming pools. According to [15], the number of re-
sidential swimming pools in the USA is over five million, and the
number is growing by 4% every year over the last 10 years. Meanwhile,
Fan et al. show that 23% homes have residential pool pumps in the
greater Sydney region in Australia [16]. A typical residential pool pump
still has a 1.5 horse CPRSP, most of which are running daily during the
swimming season, to prevent stagnation of water and resulting water
quality deterioration, as well as the hassles of household mechanical
tinkering. As a result, in many developed countries, residential swim-
ming pools are the second largest electrical load of residents, right after
air conditioners. According to a study carried out by a for-profit com-
pany Opower, the energy consumption of swimming pools is a reliable
indicators to reflect the residents’ features, such as energy-related be-
haviours and family lifestyle [16]. Residents with swimming pools
usually have larger houses, higher income levels, and larger family size.
Meanwhile, the features of behaviours of residents with swimming
pools are also different with that of residents without the swimming
pools. All of these factors result in a higher overall energy consumption,
and homes with pools used more energy than homes without pools
regardless of size, vintage, or season. In the Western USA, the annual
energy consumption of homes with swimming pools is 30% than that
without the swimming pool. Such number increases to 50% during the
summer season. Another study shows that San Antonio homes with
swimming pools consume over 40% more energy than that without the
swimming pool [19]. In the greater Sydney region in Australia, the
annual average daily energy consumption of homes with swimming
pools is 93% higher than that without the swimming pool [16]. In
additional, Wang et al. show that hotel swimming pools also sig-
nificantly increase the energy consumption per night [20]. As a result,
every year nearly 14 billion kW h electricity is used to maintain swim-
ming pools in the USA.

Currently there are some works analyzing the energy consumption
of CPRSP [15,21,22]. In [15,21], each circulating pump is equipped
with a specific meter, and the energy consumption of the circulating
pump is directly obtained from the meter. In these studies, extra in-
vestment is needed for these meters, making these methods difficult to
be used in other scenarios. Recent years, lots of efforts have been paid
close attention to non-intrusive appliance load monitoring (NIALM),
which disaggregates the energy consumption of appliances from the
aggregated energy consumption readings from a single meter. Com-
pared with intrusive appliance load monitoring (IALM) used in [15,21],
NIALM does not require any extra investment, making it more and more
popular. Currently there are many NIALM methods [23–29]. Most of
NIALM methods disaggregate the energy consumption of different

appliances mainly based on events detection, such as steady-state
events [27–30] and transient-state events [23,26,31] related to current
or voltage. Meanwhile, supervised [23] methods and unsupervised
[27,28] methods are used to identify the energy consumption of ap-
pliances. However, these NIALM methods are not suitable for the
CPRSP energy consumption in this work. First, as most of NIALM
methods are event-based, these methods require that all events (e.g.
appliances turning on/off) are detectable. In other words, during one
sampling period, the running state of an appliance should not change
more than once. Actually, when using transient-state features, NIALM
methods usually require very high sampling rates (e.g. greater than
1MHZ) [23,26,31], and when using steady-state features, NIALM
methods usually require sampling rates greater than 1HZ [27–30].
Perez et al. [30] has found that the accuracy of the NIALM methods
decrease dramatically following with the increase of the sampling
period. However, in this work, hourly aggregated energy consumption
data is used, and the sampling rate is too low to capture the state
changes of appliances, therefore NIALM methods [27–30] can not be
used for this paper. There are a few NIALM methods using very low
sampling rate data. For example, in [25], a NIALM method based on
discriminative sparse coding using hourly data is proposed. However,
such method require detail prior information of appliances such as the
types of appliances and corresponding power. However, in this work,
such information is invaluable. Meanwhile, for a practical NIALM issue,
it is difficult to obtain such prior information. Finally, from the aspect
of the features of CPRSP, the power of CRPSP is generally in the range
of 0.35 kW h and 1.45 kWh [32], which is similar with other residential
appliances. As a result, the operations of turning on/off of CPRSP are
difficult to be identified by the changes of the energy consumption
profiles. Meanwhile some CPRSP may run uninterrupted, meaning that
there is no event for these CPRSP. Therefore, CPRSP energy consump-
tion can not be estimated by these NIALM methods. In [22], a weighted
difference change-point model (WDCP) is proposed to estimate the
CPRSP energy consumption. The main idea of WDCP is that, in a certain
region, for residents with and without swimming pools, the ratio of
their temperature-independent energy consumption is approximately
equal to the ratio of their temperature-dependent energy consumptions
during the swimming season. However, such assumption is from the
observation on a specific dataset, which limits its availability.

3. Materials

In Ontario Canada, residential swimming pools are generally in-
stalled outdoor, and the swimming season is usually between May and
October when the outdoor temperature is high enough. During the use
of the swimming pools, the pool water inevitably contains pollutants,
making it turbid and stink. Such water may cause diseases at eyes, ears,
skin and digestive organs, as a result, generally a swimming pool is
equipped with a water circulation and purification system. Note that in
Canada, gas rather than electricity is used to heat swimming pools. For
a residential swimming pool, if the pool water is polluted seriously, the
swimming pool water circulation and purification system is vulnerable
to damage. Therefore, to prevent stagnation of water and resulting
water quality deterioration, as well as the hassles of household me-
chanical tinkering, most CPRSPs would run for a long period every day,
e.g., 10 h or even uninterrupted during the swimming season.

In this paper, hourly energy consumption readings of 1005 residents
in a specific neighborhood in Ontario Canada have been collected,
where 346 residents have swimming pools and the rest 659 residents do
not have swimming pools. The period is from March 1st 2011–October
31th 2012, and the total number of samples is 14713200.
Corresponding outdoor temperature data is obtained from Weather
Canada (weather.gc.ca), and linear interpolation is carried out if out-
door temperature data is lost.
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4. Energy consumption analysis for homes with and without
swimming pools

In this section, energy consumptions of homes with and without
swimming pools are analyzed in different time levels, e.g., the raw
hourly level, the daily level, and the monthly level.

Fig. 1 gives raw hourly energy consumption profiles of 4 homes with
swimming pools, and as comparisons, Fig. 2 gives raw hourly energy
consumption profiles of 4 homes without the swimming pool. Mean-
while, corresponding outdoor temperatures are given in each figure.
From Figs. 1 and 2 it can be seen that, first, outdoor temperatures have
an obvious cyclical changes, the peak is at around hour 3500 and the
valley is at around hour 7500. Second, distributions of energy con-
sumption profiles of homes are complex and different from each other.
Meanwhile, most of hourly energy consumptions are greater than 0,
and hourly energy consumptions of homes with swimming pools are not
always greater than that of homes without the swimming pool. Third,
there is a certain correlation between the energy consumption profiles
and outdoor temperatures. When outdoor temperatures are in a high
level, e.g., temperatures between hour 2000 and hour 5000, as well as
hours after 11000, hourly energy consumptions of all homes are also in
a relative high level. However, in the rest of the time, the correlation
between energy consumption profiles and outdoor temperature is not
obvious.

Due to the daily periodicity of residents’ activities, the daily energy
consumption may be more regular than that of hourly energy con-
sumption. To verify it, Figs. 3 and 4 give daily energy consumption
profiles of homes in Figs. 1 and 2, respectively. Note that in Figs. 3 and
4, temperatures are daily averaged. Compared with hourly energy
consumption profiles in Figs. 1 and 2, it can be seen that, daily energy
consumption profiles present more obvious regularity, e.g., daily en-
ergy consumption profiles of all homes change obviously with the
outdoor temperatures during day 100 and day 200, as well as days after
450. However, similar with Figs. 1 and 2, in the rest of the time, the
correlation between daily energy consumption profiles and outdoor
temperatures is not obvious.

Furthermore, average daily energy consumption profiles of homes
with and without the swimming pools, as well as their difference, are
given in Fig. 5. Meanwhile, to present the relationship between energy

consumption and time more clearly, Fig. 6 gives average daily energy
consumption profiles of homes with and without the swimming pools in
each month, as well as the difference and the ratio between them.
Furthermore, the peaks and the valley of the four profiles are given in
Table 1.

As shown in Figs. 5 and 6, and Table 1, first, the average daily
energy consumption profiles of homes with and without the swimming
pools, as well as their difference and ratios are periodic and correlated
with the outdoor temperature. The peaks of average daily energy con-
sumption profiles of homes with and without the swimming pools, as
well as their difference occur in July, and the peak of the ratio occurs in
August. Meanwhile, the valleys of average daily energy consumption
profiles of homes with and without the swimming pools, as well as their
difference occur in April, while the valley of the ratio occurs in January.

From Figs. 5 and 6, and Table 1 it can be seen that, first, although
hourly energy consumptions of some homes with swimming pools are
less than that of homes without the swimming pools, the average daily
energy consumptions of homes with swimming pools are greater than
that of homes without the swimming pool, and the peak ratio is 1.699
in August and 1.180 in January. Second, although the average daily
energy consumption profiles of homes with and without the swimming
pools jitter all the time, especially when the outdoor temperature is in a
high level, the difference profile between them is much more smooth
and presents a obvious periodicity. It may come from the fact that, for a
certain home with the swimming pool, the usage pattern (e.g., daily
start time, stop time and the operating power) of CPRSP is usually fixed.
However, it can not be considered that the difference profile entirely
comes from the energy consumption of CPRSP. As discussed in [15],
compared with homes without the swimming pool, the homes with
swimming pools usually have larger houses, more family members,
higher income levels. All of these factors would promote a higher en-
ergy consumption in homes with swimming pools. As a result, the dif-
ferences are greater than 0 during the winter when the swimming pools
are closed.

To analyze the relationship between energy consumption and out-
door temperature quantitatively, Fig. 7 gives average hourly energy
consumptions of homes with and without swimming pools, as well as
their differences and outdoor temperatures in each month. Meanwhile,
the peak hours and the valley hours are given in Figs. 8 and 9.
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Fig. 1. Examples of raw hourly energy consumption profiles of 4 homes with swimming pools.
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As shown in Fig. 7, the average hourly energy consumptions of
homes with swimming pools are greater than that of homes without the
swimming pool in each month. Meanwhile, compared with the average
hourly energy consumptions of homes with swimming pools are greater
than that of homes without the swimming pool, the difference profiles
are much more smooth. From Figs. 8 and 9 it can be seen that, peak
hours and valley hours of energy consumptions of homes with and
without swimming pools are close with each other, which means that
there is no obvious difference between the living habits of home with
and without swimming pools, e.g., the time of getting up and the time
of the main energy-related family activities. Furthermore, during the
summer (June, July and August), the peak hours of energy

consumptions are between hour 18 and hour 19, while during other
season, the peak hours of energy consumptions is between hour 20 and
hour 22. It means that the main energy-related family activities during
the summer are 2 h earlier than that during other seasons. However,
according to Fig. 9, the getting up time during all season is consistent,
i.e. between hour 5 and hour 6.

Fig. 10 gives the correlations between hourly energy consumption
profiles (with and without swimming pools, as well as their difference)
and the outdoor temperature in each month, and peaks and valleys of
correlations are given in Table 2. From Fig. 10 and Table 2 it can be
seen that, first, all three correlations change with the outdoor tem-
perature, i.e., when the outside temperature is high, the three
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Fig. 2. Examples of raw hourly energy consumption profiles of 4 homes without the swimming pool.
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Fig. 3. Daily energy consumption profiles of homes in Fig. 1.
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correlations are large, and vice versa. Second, in all months, compared
with homes with swimming pools, the energy consumption of homes
without the swimming pool has a stronger correlation with the outdoor
temperature. A important reason of this phenomenon is that, as an
significant component of the energy consumption of homes with
swimming pool, the energy consumption of CPRSP is independent to
the outdoor temperature.

5. The WDCP∗ model for CPRSP energy consumption estimation

5.1. The change-point model

Change-point models are widely used steady-state data-driven
models to obtain the relationship between the energy consumption of
buildings and the outdoor dry-bulb temperature. According to ASHRAE
(the American Society of Heating, Refrigerating, and Air-Conditioning
Engineers) [33], a change-point model is to fit a piecewise linear re-
gression with unknown change points on the Energy consumptions vs.
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Fig. 4. Daily energy consumption profiles of homes in Fig. 2.

Fig. 5. Average daily energy consumption profiles.
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outdoor Temperatures (EvOT). It is from the statistical point of view
that, within a certain temperature range, the energy consumption for
heating or cooling of buildings usually increases or decreases linearly
with the outdoor temperature. Meanwhile, for some EvOTs, within a
certain temperature range, the energy consumption does not depend on
the outdoor temperature, and the gradients of corresponding linear
regressions would be close to 0. Fig. 11 gives six EvOTs and the cor-
responding change-point models. In Fig. 11, blue stars are samples,
piecewise lines are continues linear regressions on corresponding
EvOTs, where the yellow ( <gradient 0), the black ( =gradient 0) and
the red ( >gradient 0) lines indicate the heating periods, the tempera-
ture-independent periods, and the cooling periods, respectively. Green
circles are the locations of the change points. Taking Model 5 as an
example, from left to right, before the first change point, it is a heating
period, and the energy consumption decreases linearly with the outdoor
temperature. Between the two change points, it is a temperature-in-
dependent period. Finally, after the second change point, it is a cooling
period, and the energy consumption increases linearly with the outdoor
temperature. From Fig. 11 it can be seen that using change-point
models, it is easy to estimate the energy consumption based on the
outdoor temperature.

5.2. The WDCP∗ model

Suppose A n
Φ and A n

Ω are average aggregated hourly energy con-
sumptions of residents without the swimming pool during the non-
swimming season and the swimming season, while A p

Φ and A p
Ω are

average aggregated hourly energy consumptions of residents with
swimming pools during the non-swimming season and the swimming

season, respectively, then A A A, ,n p n
Φ Φ Ω and A p

Ω can be modeled as,

= + = +A T N T Bn n n n n
Φ Φ Φ Φ Φ (1)

= + = +A T N T Bp p p p p
Φ Φ Φ Φ Φ (2)

= + = +A T N T Bn n n n n
Ω Ω Ω Ω Ω (3)

= + = + +A T N T B Ep p p p p
Ω Ω Ω Ω Ω (4)

where A is the average aggregated energy consumption, T is the average
temperature-dependent energy consumption, e.g., the energy con-
sumption of ACs, N is the average temperature-independent energy
consumption, B is the average basic energy consumption for daily life of
residents, e.g., the energy consumption of refrigerators, TV sets and
microwave ovens, which can be considered temperature-independent. E
is the average energy consumption of CPRSP, which is temperature-
independent. The superscripts p and n indicate residents have swim-
ming pools or not, and the subscripts Φ and Ω indicate data from the
non-swimming season or the swimming season. For example, Tn

Φ is the
average temperature-dependent energy consumption of residents
without the swimming pool during the non-swimming season. For the
energy consumption of residents with swimming pools during the
swimming season, the temperature-independent energy consumption
consists of the basic energy consumption and the CPRSP energy con-
sumption, = +N B Ep p

Ω Ω , while for other cases, the temperature-in-
dependent energy consumption is equal to the basic energy consump-
tion, = =N B N B,n n p p

Φ Φ Φ Φ , and =N Bn n
Ω Ω.

In Ontario Canada, generally residents use gas for heating, and use
electricity for cooling by air conditioners. Therefore, it can be con-
sidered that =T 0n

Φ and =T 0p
Φ . Meanwhile, as B B B, ,n p n

Φ Φ Ω and B p
Ω are

temperature-independent, then =B Bn n
Φ Ω and =B Bp p

Φ Ω, therefore Eq.
(1)–(4) can be rewritten as,

=A Bn n
Φ (5)

=A Bp p
Φ (6)

= +A T Bn n n
Ω Ω (7)

= + +A T B Ep p p
Ω Ω (8)

where = =B B Bp p p
Φ Ω, and = =B B Bn n n

Φ Ω.
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Fig. 6. Average daily energy consumption in each month.

Table 1
Peaks and valleys of different profiles.

Peak time Peak value Valley time Valley value

Pool July 68.364 kW h April 26.675 kW h
Nopool July 43.441 kW h April 22.066 kW h

Pool-nopool July 24.923 kW h April 4.365 kW h
Pool/nopool August 1.699 January 1.180
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From Eq. (8) it can be seen that, the energy consumption of CRPSP E
can be obtained by,

= − − = − = −E A T B N B N Ap p p p p p p
Ω Ω Ω Ω Φ (9)

In Eq. (9), A p
Φ is known, therefore, to obtain E, it only needs to

obtain the temperature-independent energy consumption during the

swimming season N p
Ω.

At present degree days methods [33,34] and change-point models
[35,36] are popular methods for the temperature-independent and
temperature-dependent energy consumption disaggregation. As degree
days methods highly depend on the user defined reference point tem-
perature (RTP), and in this paper the change-point model is used to
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Fig. 7. Average hourly energy consumption profiles in each month.
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disaggregate the temperature-independent and temperature-dependent
energy consumption.

Change-point models estimate the temperature-independent load by
carrying out piece-wise linear regression on EvOT. Fig. 12 gives EvOTs
of residents with and without swimming pools, where red points, green
points and blue points are samples from the non-swimming season Φ,
the swimming season Ω and the rest period, respectively. From Fig. 12
it can be seen that no matter EvOT of residents with swimming pools, or
EvOT of residents without the swimming pool, there is no obvious
temperature-independent period that the gradient of linear regression
on which is close to 0. It means that no reliable Nn

Ω or N p
Ω can be ob-

tained using the change-point model based on such EvOTs, as discussed
in [35], therefore the change-point model can not used to estimate the
CPRSP energy consumption E.

Rewriting Eq. (7),

= − −A T B0 n n n
Ω Ω (10)

From Eqs. (8) and (10),

= − − − × − − = − × − − ×

− − × = − × − − × − − ×

E A B T λ A T B A λ A B λ B

T λ T A λ A A λ A T λ T

( ) ( ) ( )

( ) ( ) ( ) ( )

p p p n n n p n p n

p n p n p n p n
Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Φ Φ Ω Ω (11)

where λ is a unknown weight.
In Eq. (11), λ T, n

Ω and T p
Ω are unknown. However, rewriting Eq. (11),

     − × = − × + − × +

− −

A λ A T λ T A λ A E( ) ( ) ( )p n p n

temperature dependent

p n

temperature independent

Ω Ω Ω Ω Φ Φ

(12)

From Eq. (12) it can be seen that, if a λ can be obtained making
− ×A λ A( )p n

Ω Ω temperature-independent, i.e., − × =T λ T 0p n
Ω Ω , then the

energy consumption of CPRSP E can be obtained by,

= − × − − ×E A λ A A λ A( ) ( )p n p n
Ω Ω Φ Φ (13)

And λ can be obtained by,

kmin | |
λ (14)

where k is the gradient of the linear regression on − ×A λ A( )p n
Ω Ω vs.

outdoor temperature. Note that Eq. (14) can not be solved by general
optimization methods such as least squares, as − ×A λ A( )p n

Ω Ω vs. out
temperature changes with λ. In this paper, the interior-point algorithm
[37] is used for λ optimization.

6. Results and discussions

6.1. The relationship between λ and − ×A λ A( )p n
Ω Ω vs. outdoor temperature

The key issue of obtaining E using Eq. (13) is optimizing λ, and
Fig. 13 gives the relationship between λ and − ×A λ A( )p n

Ω Ω vs. outdoor
temperature, where Fig. 13a gives the relationship between λ and k k| |,
is the gradient of the linear regression. Fig. 13b, c and d give some

− ×A λ A( )p n
Ω Ω vs. outdoor temperature under three typical λs. From

Fig. 13a it can be seen that k changes linearly with λ. In Fig. 13b and c,
=λ 0 and =λ 1, respectively, therefore actually Fig. 13b and c give A p

Ω
vs. outdoor temperature, as well as the difference between A p

Ω and A n
Ω

vs. outdoor temperature.
From Fig. 13b and c it can be seen that there is no obvious tem-

perature-independent period that the gradient of linear regression on it
is close to 0. However, in Fig. 13d, when =λ 1.167 (the optimized re-
sult), the gradient of linear regression on it is equal to 0, therefore
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Table 2
Peaks and valleys of correlations.

Peak time Peak value Valley time Valley value

Pool July 0.8028 November 0.1868
Nopool July 0.8364 November 0.2562

Pool-nopool July 0.6073 November 0.1037
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=λ 1.167 can be used to obtain E based on the dataset of all hours using
Eq. (13).

6.2. CPRSP energy consumption estimation

In this section CPRSP energy consumption in each hour is estimated
using Eq. (13), and optimized λs for all hours are shown in Fig. 14, from
which it can be seen that for different hours, optimized λs vary. How-
ever, for adjacent hours, corresponding optimized λs are close to each
other.

Fig. 15 gives − ×A λ A( )p n
Ω Ω vs. outdoor temperature under optimized

λ for different hours. Owing to limited space, only − ×A λ A( )p n
Ω Ω vs.

outdoor temperature for hour 4, hour 8, hour 12, hour 16, hour 20 and
hour 24 are given. According to the discussion in Section 5.2, if a λ can

be obtained making − ×A λ A( )p n
Ω Ω temperature-independent, i.e.,

− × =T λ T 0p n
Ω Ω , then the energy consumption of CPRSP E can be ob-
tained by Eq. (13). From Fig. 15 it can be seen that, the distributions of
all − ×A λ A( )p n

Ω Ω vs. outdoor temperature under optimized λ are close to
be horizontal, meaning that they are temperature-independent, ac-
cording to the theory of the change-point model [33], therefore the
energy consumption of CPRSP can be obtained.

Fig. 16 gives CPRSP energy consumption estimation, where the
proposed method is labeled as WDCP∗. Three temperature-based energy
disaggregation methods, namely Birt [35], Shin [34], and WDCP [22]
are employed as comparisons. Birt is a multiple-phase change-point
model method, which carries out three separate three-phase piecewise
regressions on 10th percentile data, median data, and 90th percentile
data, receptively, and base load is defined based on the change point
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with the lowest energy consumption on 10th percentile data. In this
paper the Birt method is used on Φ and Ω separately to obtain the base
load of each period. To test the robustness of this method, regressions
are carried out based on 5th,10th, and 15th percentile data, and results
are labeled as Birt5, Birt10, and Birt15, respectively. Shin is a cooling
degree-day method, and RTP is determined by a two-phase change-
point model, in which one phase is forced to be temperature-in-
dependent to obtain the base load. Using the Shin method, the base
loads during Φ and Ω can be obtained, then the CPRSP energy con-
sumption can be estimated from the difference of them. The main idea
of WDCP [22] is that, in a certain region, for residents with and without
swimming pools, the ratio of their temperature-independent energy
consumption is approximately equal to the ratio of their temperature-
dependent energy consumptions during the swimming season,

= =
B
B

T
T

r
p

n

p

n
Ω

Ω

Ω

Ω (15)

where r is the ratio. It is from the observation except the use of
swimming pools, there is no significant difference between residents
with and with swimming pools. Then E can be obtained:

= − × − − ×E A r A T r T( ) ( )p n p n
Ω Ω Ω Ω (16)

As the energy consumption of CPRSP is temperature-independent, if a r
can be found which satisfies,

− × =T r T 0p n
Ω Ω (17)

then the energy consumption of CPRSP can be obtained by,

= − ×E A r Ap n
Ω Ω (18)

Therefore, based on the WDCP model, the energy consumption of
CPRSP is temperature-independent can be obtained without estimating
the temperature-independent energy consumption during the swim-
ming season and the non-swimming season.

As shown in Fig. 16 and Table 3, using different methods, although
the estimated peak hours and valley hours of CRPSP are similar, the
estimated peak power and valley power are different. Furthermore,
results of Birt methods using different thresholds are significantly dif-
ferent, which means that such method highly depends on the user de-
fined parameters, therefore results are unreliable. Meanwhile, it can be
seen that the results of WDCP and WDCP∗ are close to each other.
However, the WDCP method depends on the assumption of Eq. (15).
Although in [22] such assumption has been proved on the specific
dataset, it may fail on other datasets. Compared with the WDCP model,
the proposed WDCP∗ method does not depend on such assumption,
therefore results of WDCP∗ are more reliable than that of WDCP.

6.3. The impact of CPRSP on the load profile of the peak day

Energy consumption profiles of all homes can be obtained from the
dataset directly. It can be found that peak load occurs at 18:00, Jul. 21,
2011, as a result, the peak day is Jul. 21, 2011, and the peak hour

=H 18max .
Fig. 17 gives the impact of CPRSP on the energy consumption

profile on the peak day, where Fig. 17a gives the impact of CPRSP on
residents with swimming pools, while Fig. 17b gives the impact of
CPRSP on all residents. From Fig. 17a it can be seen that for the ratio of
the energy consumption between CPRSP and residents with swimming
pools changes with hours, and the maximum ratio and the minimum
ratio are at hour 5 and hour 11, respectively. Meanwhile, at the peak
hour =H 18max , the ratio is 20.11%. From Fig. 17b it can be seen that
for the ratio of the energy consumption between CPRSP and all re-
sidents changes with hours, and the maximum ratio and the minimum
ratio are at hour 5 and hour 11, respectively, which are the same to that
of residents with swimming pools. Meanwhile, at the peak hour

=H 18max , the ratio is 8.79%.
From Fig. 17 it can be seen that the energy consumption of CPRSP

takes a relative large part of the overall energy consumption of re-
sidents with swimming pools. And if all of these CPRSP are stopped,
then peak load would be shaved by 8.79%. However, according to
Table 3, the minimum energy consumption of CPRSP is 0.4970 kW h, it
may be resulted from those CPRSP running uninterrupted, therefore
stopping these CPRSP may reduce users’ comfort.

6.4. Peak load shaving by load shifting of CPRSP

Because shifting the running period of CPRSP earlier or later would
not reduce users’s comfort, this section quantifies how much the peak
load can be shaved by shifting load of CPRSP, rather than turn them off.
First, this paper quantifies how much peak load can be shaved by
minimizing the power cost of CPRSP. Second, this paper quantifies the

Temperature(oC)
-30 -20 -10 0 10 20 30 40

E
ne

rg
y 

co
ns

um
pt

io
n(

kW
h)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Temperature(oC)
-30 -20 -10 0 10 20 30 40

E
ne

rg
y 

co
ns

um
pt

io
n(

kW
h)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 12. EvOTs of residents with and without swimming pools, where red
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article.)
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maximum shaving of the peak load by postponing the running period of
CRPSP. Table 4 gives electricity rates and prices during summer in
Ontario Canada [38], and Fig. 18 gives the relationship between the
postponed hour and the average daily cost of CPRSP as well as the ratio
of peak load shaving. From Fig. 18 it can be seen that the average daily
cost of CPRSP and the ratio of peak load shaving vary with the post-
poned hour. Note that the postponed hour for the minimum average
daily cost of CPRSP is 6, while the postponed hour for the maximum
ratio of peak load shaving is 8. Fig. 19 gives the impact of the use of
CPRSP on the peak day, from which it can be seen that when con-
sidering minimizing the peak load, by postponing CPRSP for 8 h rather
than turn them off, the peak load can be shaved by 4.64%. When
considering minimizing the cost of CPRSP, peak load can be shaved by
3.15% by postponing CPRSP for 6 h, meanwhile the peak hour is
postponed from 18:00 to 19:00.

6.5. The feasibility of the proposed method

A high peak load does not only increases the infrastructure cost and
the power generation cost, but also increases carbon emission and the
maintenance cost of transmission lines and equipment, therefore peak
load shaving is a very important issue. Peak load shaving can be
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Fig. 13. The relationship between λ and − ×A λ A( )p n
Ω Ω vs. outdoor temperature, where k is the gradient of the linear regression.
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Fig. 15. − ×A λ A( )p n
Ω Ω vs. outdoor temperature under optimized λs for different hours.
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achieved both on the supply side and the demand side. On the supply
side, to shave the peak load, methods such as direct load control,
emergency demand response, critical peak pricing, and real time pri-
cing are usually used. While on the demand side, to shave peak load,
methods such as renewable energy and electric energy storage have
been widely studied. However, most of peak load shaving methods ei-
ther require extra investments or reduce the comfort of the consumers.
For example, direct load control allows the power supplier directly
control the status of appliances, and customers will receive various
payments as rewards. Direct load control is an effective method for
peak load shaving, however, for example, in the Texas reliability entity
region in the United States, only 0.11% customers enrolled in direct
load control. The main reason may be that, from consumers psychology
perspective, direct load control may disrupt their lifestyle and comfort.
Meanwhile, for peak load shaving on the demand side, extra investment
is an obstacle for renewable energy and electric energy storage.
However, in the proposed method, as CPRSP are used for pool water
circulation and purification, compared with direct load control or
electric energy storage, controlling the activity periods of CPRSP would
not reduce user comfort. Meanwhile, it does not require any extra in-
vestment including devices and sensors. Furthermore, according to
Fig. 18, based on the proposed method, the average daily cost of CPRSP
will be reduced from CAD 1.918 to CAD 1.762, and the users’ operation
is only to postpone CPRSP for 6 h by timers. Such operation doesn’t
require any extra investment, meanwhile it would not reduce any
comfort of users. Therefore, shaving peak load by controlling the ac-
tivity periods of CPRSP would be a feasible method.

6.6. Discussions on the settings and assumptions

In this paper, although there is no explicit parameter to be set, the
WDCP∗ model depends on the definitions of the non-swimming season
Φ and the swimming season Ω, as well as the assumption that the en-
ergy consumption of CPRSP is independent to the outdoor temperature.
This section will discuss these two issues in detail.

According to Eq. (13), the energy consumption of CPRSP E is esti-
mated using A A A, ,p p n

Ω Φ Ω and A n
Φ, therefore the definitions of the non-

swimming season Φ and the swimming season Ω are very important. In
this paper, Φ and Ω are defined based on the analysis on AΔ shown in
Fig. 5,

= − = + + − + = − + − +

= + +

A A A T B E T B T T B B E

T B E

Δ ( ) ( ) ( ) ( )

Δ Δ

p n p p n n p n p n

(19)

In Fig. 5, A A,p n and AΔ are labeled as Pool, NoPool, and Pool-NoPool.
From Fig. 5 it can be seen that, according to the trend, the dis-

tribution of AΔ can be divided into four periods: the low level period L
(approximately from day 1 to day 60, and from day 250 to day 420), the
high level period H (approximately from day 120 to day 180, and from
day 480 to day 540), the ascending period U (the transition period from
L to U), and the descending period D (the transition period from H to L).
Note that L is mainly in winter, the outdoor temperature is low, and
swimming pools are generally not used. Meanwhile H is mainly in
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Fig. 16. CPRSP energy consumption estimation using different methods.

Table 3
Results of different methods.

Birt5 Birt10 Birt15 Shin WDCP WDCP∗

Peak power 1.2585 1.2956 1.4332 1.2428 0.9623 0.9974
Peak hour 16:00 16:00 17:00 16:00 17:00 17:00

Valley power 0.2941 0.4259 0.4251 0.4459 0.5312 0.4970
Valley hour 9:00 9:00 9:00 9:00 9:00 9:00

Average power 0.6982 0.8019 0.8469 0.7193 0.7423 0.7427
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Fig. 17. The impact of CPRSP on the energy consumption profile on the peak
day.

Table 4
Electricity rates during summer in Ontario.

Categories Time ranges Electricity rates (CAD/kW h)

Off-peak 7PM-7AM 0.077
Mid-peak 8AM-11AM, 6PM-7PM 0.113
On-peak 12AM-5PM 0.157
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summer, the outdoor temperature is high, and many swimming pools
are in use during this period. Therefore,

= +A T BΔ Δ ΔL L L (20)

= + +A T B EΔ Δ ΔH H H (21)

As shown in Fig. 5, during the high level period, both of AH
p and AH

n

have high correlations with the outdoor temperature and vary greatly
with the change of the outdoor temperature. While during the low level
period, both of AL

p and AL
n have low correlations with the outdoor

temperature, which is in accordance with the analysis in Fig. 10. It is
from the fact that, the temperature-dependent energy consumption is
mainly used for cooling and heating. For the residents analyzed in this
paper, during summer, cooling is achieved mainly using air condi-
tioners whose energy consumption depend on the outdoor temperature.
While during winter, heating is achieved mainly using other energy
sources such as gas rather than electrical energy.

Compared with Ap and An, the distribution of AΔ is much smoother,
which indicates that the impact of the outdoor temperature on AΔ is
much smaller. It can be explained that, the main difference between Ap

and An is the use of swimming pools, and the energy consumption of
CPRSP is temperature-independent. As a result, the impacts of the
outdoor temperature on Ap and An are largely consistent, and AΔ
mainly depends on BΔ and E in Eq. (19). Note that BΔ is temperature-
independent and can be considered almost invariable during the low
level period and the high level period, therefore the difference between

AΔ H and AΔ L mainly depends on the energy consumption of CPRSP E. It
is worth noting that during the low level period, AΔ L is close to a
constant, therefore TΔ L is close to zero. However, during the high level
period, AΔ H varies with the change of the outdoor temperature in a
small range. It is from the fact that, the temperature-dependent com-
ponents of AH

p and AH
n are slightly different due to the factors such as

the differences of the size of houses and living habits of the residents,
therefore TΔ H cannot be ignored. As a result, E cannot be directly ob-
tained by −A AΔ ΔH L.

From the above analysis, the change of AΔ during all seasons in
Fig. 5 can be explained that, first, when the outdoor temperature is low
(the low level period), most of CRPSP are inactive. With the increase of
outdoor temperature (the ascending period), more and more CPRSP are
active. Note that E is calculated by the total energy consumption of all
active CPRSP divided by the number of all CPRSP, therefore E as well as

AΔ rise gradually with the increase of active CPRSP. During the high
level period, the number of active CPRSP is stable in a certain range.
After that, with the decrease of the outdoor temperature (the des-
cending period), more and more CRPSP are inactive. Finally, most of
CPRSP are inactive, i.e., ≈E 0, and then AΔ enters into a new the low
level period. Therefore, the high level period with a stable number of
active CPRSP can be used as a swimming season to analyze the energy
consumption of CPRSP. To make it no ambiguity, some data at the edge
of H are ignored, and the swimming season is defined from Jul. 1, 2011
to Aug. 30, 2011 and Jul. 1, 2012 to Aug. 30, 2012.

Furthermore, a longer swimming season can include more data of
Ap and An, which can make the results more robust. However, if the
swimming season consists of data from periods L U, or D, some inactive
CPRSP would be included in the estimation of E. As a result, the esti-
mation of E would be lower. For example, the estimation of E is
0.7429 kW h when Jul. 1, 2011 to Aug. 30, 2011 and Jul. 1, 2012 to
Aug. 30, 2012 are selected as the swimming season as did in this paper.
However, it is reduced to 0.5837 when May 15, 2011–Sep. 15, 2011
and May 15, 2012–Sep. 15, 2012 are selected as the swimming season.

Another issue is the relationship between the CPRSP energy con-
sumption and the outdoor temperature. This paper considers that the
CPRSP energy consumption is independent to the outdoor temperature.
Although the CRPSP energy consumption cannot be measured directly
as there is no specific smart meter installed on them, the relationship
between the CPRSP energy consumption and the outdoor temperature
can be derived from three aspects.

The first aspect is the work pattern of CPRSP. For a residential
swimming pool, when the outdoor temperature is cold, e.g., in winter,
the swimming pool would be drained and covered with a lid. When the
outdoor temperature is warm enough, the resident would decide to
begin using the swimming pool, and the swimming season for this re-
sident begins. As the dirty swimming pool water will damage the water
circulation system, during the swimming season, CPRSP will be active
all day long or control by the timer to carry out the swimming pool
water circulation to keep the pool water clean. When as the outdoor
temperature is too cold for swimming, the resident would terminate his
swimming season in this year. Then the swimming pool would be
drained and covered with a lid again, until the swimming season in the
next year begins. Therefore the use of CPRSP is independent with the
outdoor temperature, and the CPRSP energy consumption can be con-
sidered independent to the outdoor temperature.

The second aspect is based on the distribution of AΔ in Fig. 5. As
discussed above, the temperature-dependent component of AΔ is small,
which is mainly from TΔ . As a result, the correlation between the en-
ergy consumption of CPRSP and the outdoor temperature is very low.
Therefore, the CPRSP energy consumption can be considered in-
dependent to the outdoor temperature.

The third aspect is the estimation results shown in Fig. 15, which
gives − ×A λ A( )p n

Ω Ω vs. outdoor temperature under optimized λ for
different hours. According to the discussion in Section 5.2, if the CPRSP
energy consumption is independent to the outdoor temperature, then if

Postponed hours
0 5 10 15 20

A
ve

ra
ge

 d
ai

ly
 c

os
t o

f C
P

R
S

P
 (C

A
D

)

1.6

1.8

2

2.2

R
at

io
 o

f p
ea

k 
lo

ad
 re

du
ct

io
n

0

0.02

0.04

0.06

Average daily cost of CPRSP (CAD)
Ratio of peak load reduction
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a λ can be obtained making the distributions of − ×A λ A( )p n
Ω Ω vs. out-

door temperature is close to be horizontal. It can be seen that results in
Fig. 15 reflect such this phenomenon, therefore, the CPRSP energy
consumption can be considered independent to the outdoor tempera-
ture.

7. Conclusion and the future work

As a high peak load does not only increases the infrastructure cost
and the power generation cost, but also increases carbon emission and
the maintenance cost of transmission lines and equipment, recent years
peak load shaving has been attracted more and more attention.
However, most of peak load shaving methods either require extra in-
vestments or reduce the comfort of the consumers. Based on an ex-
tensive dataset containing hourly energy consumption readings of 1005
residents during March 2011 and October 2012 in South Ontario, this
paper analyzes the energy consumption of circulating pumps of re-
sidential swimming pools and its impact on the peak load. This paper
first analyzes the features of the energy consumption of homes with and
without swimming pools, then proposes a novel non-intrusive appliance
load monitoring method to estimate the energy consumption of circu-
lating pumps of residential swimming pools. Finally, this paper quan-
tifies how much peak load can be shaved by shifting the active time of
circulating pumps of residential swimming pools.

The target of the project described in this paper is to provide sug-
gestions for power supply companies to establish appropriate power
supply plans. From the point view of power supply companies, they
mainly focus on the overall pattern of the load profile in a region,
especially the characteristics of the peak load, as well as the factors that
affect the peak load, rather than individual power consumption pat-
terns. Therefore, in this paper, the average energy consumption values
are used, and the regional users overall energy consumption pattern is
analyzed. In next step, this project will be extended to analyze the in-
dividual-level and subgroup-level features of residential energy con-
sumption. Furthermore, in the future, some new projects will be es-
tablished and specific smart meters will be install on circulating pumps
of residential swimming pools to directly verify the proposed method.
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