IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

Solar Power Shaping: An Analytical Approach

Y. Ghiassi-FarrokhfalMember, IEEES. KeshavMember, IEEEC. Rosenbergkellow, IEEE,and
F. Ciucu,Member, IEEE

Abstract—The focus of our work is the use of an energy
storage system (ESS) to integrate solar energy generatonsto the
electrical grid. Although, in theory, an ESS allows intermitent
solar power to be shaped to meet any desired load profile, in
practice, parsimonious ESS dimensioning is challenging auto
the stochastic nature of generation and load and the diversi
and high cost of storage technologies. Existing methods for
ESS sizing are based either on simulation or analysis, both
of which have shortcomings. Simulation methods are compu-
tationally expensive and depend on the availability of extesive
data traces. Existing analytical methods tend to be conseative,
overestimating expensive storage requirements. Our key gight
is that solar power fluctuations arise at a few distinct time sales.
We separately model fluctuations in each time scale, whichlalws

« Simulations: Given datasets of solar irradiance and de-
mand profiles, it is possible to simulate an ESS of a
particular size that is based on a particular storage tech-
nology to determine the probability of loss of power [24].
For a given ESS technology, this simulation must be
repeated for each storage size until the minimum ESS size
that meets the requirements is obtained. Although this
method is widely used due to its simplicity and precision,
it has two drawbacks. First, to obtain small values of loss
of power probabilities, the simulation must incorporate
sufficiently large datase'tsSecond, simulations need to
be re-run for each choice of parameter values, such as

us to accurately estimate ESS performance and efficiently =
an ESS. Numerical examples with real data traces show that ou
model and analysis are tight.

the storage size, which is computationally expensive and
cumbersome.

o Analytical methods: They mathematically model a
stochastic solar generator, an ESS, and stochastic de-
mands to estimate the loss of power probability. The
existing analytical methods [11], [26], [27], [28] are
more efficient than repeated simulations, but have two
drawbacks. First, they are based on strong assumptions,
throwing into question the validity of the obtained results

I. INTRODUCTION

Traditionally, energy generators are finely controlled to
match the fluctuations in aggregate demand. Unfortunately,
due to their intrinsic stochastic nature, solar energy tnes
cannot be controlled in this way, making it difficult to intage
them into the grld SpeCiﬁca”y, solar fluctuations can harm Second’ they are often too Conservative, resumng in
power quality, increase the need for regulation, and compli  oversizing of the ESS.
cate Iogd following anq. unit commitment [4]. Hence, these What is desirable, therefore,
fluctuations must be mitigated [9], [10], [21], [14].

Several approaches to integrating stochastic energy g
erators have been proposed in prior work [8]: geographica
diversity, complementary energy sources (e.g., wind afat)so

is an analytical model that
makes few assumptions and closely approximates the results
)m simulations, thus providing the best of both worlds.

Our key insight is that an analytical model for an ESS

- . ed for solar power shaping must take into account the three
demand response, oversizing the capacity of the renewa#)]%

energy sources, forecasting generator variations, amig us insic time scales over which solar power fluctuatesstf-at
gy sou ' ng 9 vanations, YSthe time scale of a day, solar power varies due to the posifion

energy storage systems (ESS) [22]-Ch.12. Using an ESStH% sun in the sky. Second, long-term cloudiness causesrpowe

interes_ting, in _that an ESS prqvides flexibility to meet salie fluctuations at time scales ranging from a few hours to about
of the integration challenges listed above [2]. Thus, theifo 0 minutes. Third, there is a high-frequency power modaati

of our workis in ESS dimensioning to match stochastic supp e to clouds at time scales faster than about 10 minutes. Thi

with stochastic demands. . is demonstrated vividly by the power spectral density oasol
In theory, energy from solar generators can be stored in Dver (Fig. 3) [3] [12]. Therefore, we model the impact of

ESS and withdrawn as necessary to match any desired demag\ﬁds by multiple stochastic processes at different tioades.

with only a small probability ofloss of power In practice, . . . e
however, this solar shaping is challenging due to the désers We have used this analytical model, along with a unified

. : . . analytical ESS model from our prior work [11], to accurately
physical constraints of storage technologies and thefoumi stimate loss of power performance and optimally size an ESS
high cost. For each ESS technology, we want to compute 1% P P P y

e I :
minimum size which can meet demands with an acceptab ar key contr_|but|ons are. i
risk of loss of power [6], [16], [23]. 1) We provide a new analytical model for solar power

€
There are two existing approaches to size an ESS for solar Shaping which characterizes both the short-term and long-

energy generators. term variations in daily solar power.

2) Given any feasible pair of target output power shape and
allowable loss of power threshold, we provide techniques
to compute a near-optimal ESS size using our unified
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For instance, if the target loss of power probability is 1 dmyl0 years,
the datasets must be for a period of at least 10 years, if mgelo
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We illustrate our energy storage system (ESS) model in

Name Description . - .
. ; , Fig. 1 (Please see [11] for the details). Solar power is used t
Iy(t) The actual solar insolation at tirme(W/m?2) h di | h ible (i
Ios(t)  The clear sky insolation at time (W/m?) serve the target output power directly as much as possible (i
apy  Photovoltaic coefficient it departs the system without going through the storage). If
g*(tt) Egg ?Utputt pawer at time (tWt')me(W) in a given time slot, the available solar power is insufficient
Sé)) Solar 3[)9v‘;’er°;ﬂ;;n§°(v\,vve; at (i.e., S(t) < D*(t)), the energy stored, if any, can be used to
Sp(t)  Solar power aggregate in time intervals of sEgW) make up the difference. Moreover, if the available solar @ow
Gzé(t) g?;ggg;? :g’;f;gepgﬁgv((\e’l\gpe snw) in a time slott is larger than the target output power (i.e.,
Gy Dynamic sample path upper envelope $r(W) S(t) > D*(t)), then the_ §urplus energy{(?) - D*(t)_)Tu) IS
CSIt)  Clear sky index at time (IIQ%) stored in the storage, if it is not yet f.uII_. AII incoming powe
B Storage size (Wh) o8 exceeding storage’s charging rate linait is dropped. The
ac(ag)  Storage charging (discharging) power limit (W) discharging rate isy;. Moreover, the storage loses a fraction
bub gttgg@g’z gg'gt'ﬁ”gfy discharge of 1 —n of the total energy being stored in the storage due to
e The allowable risk of loss of power storage inefficiency. Finally, the storage lifetime coastt is

met if only a DoD fraction< 1 of the entire storage is used

Let the actual output power from ESS at any timde
D(t). Then,D(t) < D*(t) due to the ESS limitations such as
inefficiency, leakage, and finite size. An important reskarc
problem is to find the minimum storage size and the best
storage technology to guarantee the target output power at
any timet (i.e., D(t) = D*(t)) with an allowable riske*. In
other words, at any tim¢ we must have

TABLE |: Notations

D'O-SOl, o,

7
l B(DoD)

-

b(t)

[S(t) - D* ()],

Pr{D(t) < D*(t)} < e*. 1)

Fig. 1: A renewable energy souréeequipped with a storage  There are three ways to reach this goal:

to provide a target output powed*. The storage physical
constraints arev., oy, 1, and DoD. The actual output power
is D.

ESS model.

3) Using real datasets, we show that the results from our an-
alytical model reasonably match those from a simulation-
based approach where the complete dataset is known
ahead of time (we call it offline optimal) and considerably
outperform prior analytical models.

The rest of the paper is organized as follows. In Section 11, ,
we discuss our system model and define the problem. We
review the existing solar power models which can be used
for solar shaping in Section Ill. We describe our solar power
model in Section IV. We then formulate and solve the solar
power shaping in Section V. We evaluate our approach in
Section VI, and conclude the paper in Section VII.

The stochastic process under study heresofar power
which is a fluid-flow (i.e., can take any value) process.
We assume a discrete-time model, where time is slotted
t =0,T,,2Ty,..., with T, being the time unit. To simplify
notation, we dropT, from our formulation by assuming

PROBLEM DEFINITION

Direct simulation: Given a large enough solar power
measurement trace, one can simulate the charg-
ing/discharging process in the ESS system in Fig. 1 for
each storage technology and iterate on the storage size to
find the minimum size which satisfies Eq. (1).

Direct simulation is the most accurate method, but has
major weaknesses. First, very large datasets are required
for small values ofs*. Second, the complexity of this
method is cumbersome given that for each storage tech-
nology and size, we need to repeat the simulation for the
entire large data trace.

Simulation with a generated data-trace If the available
dataset is not large enough, a large data trace can be
generated by simulating the statistical properties of the
given data trace. Then, the rest is identical to the direct
simulation method. This method is not as accurate as
the direct simulation due to possible inaccuracy of the
generated data trace.

Analysis. This method computes an analytical upper
bound onPr{D(t) < D*(t)}. This upper bound is a
function of the statistical properties of the solar powee, t
type, and the size of storage. This method does not suffer
from the shortcomings of the direct simulation method.
However, it might lead to oversizing if the model and
formulations are not tight.

In this paper, we assume that the given measurement dataset
of solar power is not large enough to use direct simulation

power to a target output power using a storage system. Denf&re the target loss of power probab|l|t|es. Hence, we must

N . . sé either of the two other methods (listed above) to model
by S(t) and D*(t), respectively, the available solar powe -
. R solar power based on the limited measurement set. We call
and the system target output power at timeTo simplify

notation, we writeD*(s,t) and S(s,t) to, respectively, mean
e D) and X S(r) (8.9, S(t - 1,¢) = S(1)).

T, = 1. Generalizing the formulas for arifj, is a matter of
additional notations. The goal is to shape the fluctuatidgrso

2The energy stored in the storage decreases due to seladigctHowever,
for battery storage systems this value can be safely neglect
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Fig. 2: lllustrating the global and the clear sky irradiance formpte F19- 3: Power spectrum of the 1min values of the global solar
day. irradiance [12].

solar power models which are used to generate traces (secoﬁt\i Large t|:cne-scal_e dvarlk?tmns:Lo;g—ter_m cIoudmgsg t?]at
method) adeature modelsnd those to compute performance occurs for periocs between minutes an ours

bounds (third method) astatistical modelsWe discuss the are modeled b_y this stochastic Process. Long-term s_olar
existing models of each category in the following section. power fluctuations have substantially different statidtic
properties than the short-term ones because larger time

intervals reflect the aggregate impacts of all attenuations

and enhancements [25], [19]. The larger the size of

the cloud, the larger the size of the time interval. This
The clear sky irradiance denotedl¢g, is the amount of corresponds to the middle linear section in Fig. 3.

power received from the sun per square metgy:?) in the  3) Diurnal: This stochastic process corresponds to 2he

absence of clouds, shadows, and atmospheric particulates.  hour andi2-hour time scales and is due to the daily transit

is easy to mathematically model this value at any point on of the sun in the sky, with the morning and evening solar

the surface of the globe for a given time of day, day of year, power being roughly equilThis corresponds to the two

and surface tilt angle [5]. In contrast, tlghobal irradiance, sharp peaks in Fig. 3.

denoted/,, is the amount of power that is actually received by This discussion indicates that an accurate solar power mode

a photovoltaic (PV) panel. PV output power is almost lingarimust separately characterize diurnal, short-term, ang-term

proportional to the global irradiance, so that solar power variations. We now present the existing models.

generated by a panel of unit size at any timis given by

I1l. BACKGROUND AND RELATED WORK ON SOLAR POWER
MODELLING

S(t) = apy x I,(t) ) B. Existing models for solar power

) o We categorize the existing models irfieature modelsnd
wherea,,, is the efficiency of the panel. ~ statistical modelsFeature models extract certain features of
The ratio of the global irradiance to the clear sky irrad@nGg|ar power production from a dataset. These traces can then
(typically, but not always, smaller than 1) is called @kar e ysed for performance analysis through simulation. Skati

Sky Indexor CSI cal models, on the other hand, are not used to generate traces
They only extract some statistical characteristics frora th
A. Frequency-domain analysis dataset and use those characteristics to formulate peafaren

. : . metrics. In the following, we review some of the most-widely
Solar power fluctuations arise from three stochastic pro-
used models of each category.

cesses, each operating in a different time scale [12] asrshow 1) Clear Sky Index-based model (feature modéfyhas
in Fig. 3: ) o _ been shown that at large time scales (larger than hourly),
1) Sho_rt tlm_e s_cale_var|at|ons:Th|s process models fluc- the global irradiance can be modelled accurately [15] by

tuations in irradiance when the direct solar beam isparately modelling clear sky irradiande:¢) [5], [13] and
blocked by clouds. This typically results in attenuatioge clear sky index (CSI) (the ratio of the global irradiance

that changes rapidly over time, but, in some cases, c@the clear sky irradiance) [17], [20] Clear sky index is
actually lead to an enhancement of solar power [19].

It has been found that solar power fluctuations due to®The second peak corresponds to the length of a typical daighvit 12
inhomogeneous small clouds happen on a time sc&R!rs for the location studied in this graph. _

horter than 10 minut Thi ds to the right A similar, older model characterizes tlaearness numbefinstead of
S_ orter a.n X m”_m es. IS corresponas to the rg mQZSE;I), which is the ratio between the global irradiance ardktraterrestrial
linear section in Fig. 3. irradiance (the irradiance measured outside the atmosghesatellites).
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This model suffers from the following shortcomings:

1600 " CSl-based trajectory 1) Not accounting for the diurnal eff_ect: Unlike the CSI-
1400F - - -Actual solar irradiance based model, this model cannot suitably accommodate the
- diurnal effect as described above. Due to the fact ¢hid a
£ 12007 1 uni-variate function, this model can be a good candideaty
51000, | for a stochastic process which modulates a function which
§ is only dependent on the size of the time interval (and not
8 800 ] the position), or equivalently, a constant rateat any time
£ ool 1 instant, i.e.,G(t) = rt. Therefore, this model is not a good
3 candidate for solar power as the deterministic diurnalotfté
¢ 4007 ] solar power is a function of both the length and the position
200t 1 of each time interval.
2) No separation between the short-term and long-term
6 8 10 12 14 16 18 variations (the knee point at 10min in Fig. 3): The general
Time of the day (H) envelope model characterizes both the long-term and th#-sho

Fig. 4: Comparing the actual solar irradiance with the CSI-baséSrm varlatlons,_ simultaneously, throughand for this reason
generated trajectory in a cloudy winter day. cannot be precise.

IV. A NEW ANALYTICAL MODEL FOR SOLAR POWER

characterized under the assumptions that it is a Lévy gsoce SHAPING
(stationary and independent increment with a continuoabpr In this section, we propose a new envelope model. This
ability) with bi-modal distribution at any time instant [19 model adapts the general envelope model to enable a separate
[25]. Then, the global irradiance at any given time is givgn bcharacterization of the three underlying processes ofr sola
ower (diurnal, long-term, and short-term variations).
Iy(t) = CSI x Ies(t). ®) P To a(ccount for g:he diurnal effect, we replace )the uni-

Solar power modelling for smart grid applications dealgariate sample path envelope function in the general epeelo
with higher time resolutions than hourly (e.g., every miut model by a bivariate envelope called tthgnamic sample path
Unfortunately, CSl-based models are not accurate at tirage tenvelope A bi-variate functionG,(s,t) is a dynamic sample
scales due to the assumption of CSI being a Lévy proceBgth envelope on solar powsy, if it satisfies
which becomes less accurate in smaller time scales. Fig. 4
shows how erroneous a trajectory generated based on CSI Pr{r?%f (Ga(s:t) = S(s,1)) > U} <e(9) (6)
method can be, compared to the actual solar irradiance dafany timet and for anys > 0.
trace. As observed in Fig. 3, the statistical properties of shontti

2) General envelope-based model (an analytical model)scale (1min-10min) is different from large time scale (16mi
In this model, the important statistical properties of sola®h). Hence, we separate the two regimes: short time scate wit
power which impact the charging/discharging processes ajiie unit of 1 and large time scale with time urift > 1. In
represented by envelopes. To see the nature of the envelgggge time scale regime, solar powsy- is the average of
required, consider an ideal ESS with infinite storage si@yr's in time slots of sizel’ (see Fig. 5a), i.e., for any integgr

power S, and target output poweb*. Using the mapping Z(HI)T ()
. it -
between the st_ate of chargc_e (SoC) in such a system and thST(t) _ Ler=jT+41 Vi JT<t<(+1)T. (7)
buffer content in packet switch networks, we have from the T
well-known Reich’s equation: The variations inSy reflect the large time scale variations

(10min-9h in Fig. 3) and the variations it — St reflect the
variations in short-time scale (1min-10min in Fig. 3).
We characterize the variations in the large time scale by

From Eq. (4), if we know a lower bound onaxo<<; S(s, 1), g.dynamic envelop&sr(s,t) with bounding functiod er,
then we can compute a lower bound (envelope) on the Sosa‘tisfying

Several recent papers [26], [27], [28], use the well-known
statistical sample path envelopgk8] for this matter; solar Pr{max (Gr(s,t) — Sr(s,t)) > x} <erp(z). (8)
power S is characterized by a statistical sample path lower sst

envelopeg and a bounding function such that at any time for anyz > 0. In addition, suppose th&l (s, t) — Gr(s,t) is
t > 0 and for anyo the lower dynamic envelope which characterizes the sleont-t

variations with bounding function;. Thus, for anyz > 0
Pr{mgi( (G(t — ) — S(s,1)) > cr} <c(o).  (B)

Pr{max ((Ga(s,t) = Gr(s,1) = (S(s,1) = Sr(s,1)) > x|

In this model,G characterizes the underlying deterministic < 9
behaviour of the cumulative solar power andtharacterizes < eifz). ©)
the stochast!c variations (i.e., the likelihood that cuative s is defined such that it can vary only at time instants ;7 for any
solar power is less thad). j=0,1,....

SoC(t) = Jax, (S(s,t) — D*(s,t)). 4)
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Fig. 5: Our solar power model: Our terminology and the two-stage break-down in our model.

Then, we can obtain a bounding function corresponding #0The choice of Gr: Gt represents the deterministic trend

the dynamic envelop§,; on S as follows: (diurnal effect) of solar power. Two good candidates@ie=
Ics andGr being the historical average 6f-. The latter one
Pr{r?gf (Ga(s,t) — 5(s,1)) > U} is a great choice when a large dataset is available so that the

historical average can be estimated precisely. If largasgds
are not available, then the former one is a great choick:as
_ can be estimated quite precisely using the existing models.
+Pr{?§f((gd(s’ﬂ Gr(s,1) e The choice of T: The right choice ofT" is crucial as it
determines the boundary between the small and large time
—(S(s,t) — St(s,t 10 . )
(5(s,2) r(s:1) > xl})’ (10) scales in our model. Indeed, the optimal valueTofmust

< inf (Pr{rglgg{(GT(s, t) — Sr(s,t)) > xT}

x1+xr=0

<. +ilgfglf_o_(ézr(w:r) +e1(z1)), (11) coincide with the knee point in Fig. 3 (around 10min) and
. depends on the location, PV panel sizes, and the cloud
=e(o) type/speed in that location.

where in the second line, we use the fact tRatA + B >
a+0b) < Pr(A > a)+Pr(B > b) for any random variables
A and B and any constants andb. In the last line, we use
Egs. (8)-(9). For a given solar power datasgf an envelop&;,, and for

The first term in Eq. (10) is in the large time scale regiméxed choices of37 andT’, we want to characterize a bounding
as bothSr and G can vary only at time instants = j7° functione satisfying Eq. (6). We do so for a specific dataset,
for anyj = 0,1,.... The second term in Eq. (10) is in thei.e., the U.S. Department of Energy’s Atmospheric Radratio
short time scale regime. Thus, Eq. (10) breaks the model infgasurement (ARM) [1] dataset, which is freely available W
long-term and short-term variations. characterizer, £1, and eventually.

In summary, we model solar power by a dynamic envelope The bounding functiorzr is characterized as follows: We
G4 and a bounding function in terms of Eq. (6). The strengthwant to construct a dynamic sample path envelope on solar
of our analytical model is that, unlike previous models, power in each day. Hence, solar power in each day in our
can separately characterize the three underlying timescalataset can be considered as a trajectory. Construct & set
of solar power by: with elementsy®* chosen at timeg > 0 corresponding to a

1) Accounting for the diurnal effect: using a bi-variate trajectoryi such that
envelope functiorg,. it i
2) Separate characterization of the short-term and long- yu= orél?%‘t(GT (t=5) = Sp(s,1),

term variations: using two time scales in describing the h indexto refer to the traiectory. F
bounding functiore as in Eq. (10). where we use superindegxto refer to the trajectory. From

. Eqg. (8),er can be chosen to be the Complementary Cumula-
There are two free parameters in our solar power maddel: A (8).ex b Y

dGr. P hoi fth ters lead t ti\{te Distribution Function (CCDF) of any distribution théitis
andtrr. FTOPEr cholces of tRese parameters iead 1o an accurgte,y, toyng (through QQ-plots which are not shown here
solar power characterization.

due to lack of space) that fitting a distribution of the form
fy (@) = (1=p%)b0 () +p%are=>T* is a good choick pd is
the ratio of the non-zero elementstnandar is the parameter

B. How to characterize the bounding functien

A. How to choose the free parameters?

Minimizing the modelling error ovef” and Gr is a non-
convex problem. However, here are some good choices: 860(z) = 1if =0 anddo(z) =0 if = # 0.
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B’ at anyt > 0 then, this system can provide the target output
S'(t) ; :|. D* with the risk of failinge*, given by
" = min (g9, 25(Bo)) , (19)

Fig. 6: Converting a non-ideal storage model to an ideal one by
defining virtual sources’, demandD’, and storage siz&'. where By is the initial state of charge.

Remark: Corollary 1 can also be used for storage sizing:

obtained when fitting an exponential distribution to the norf?Ven a target output poweb™ and a maximum allowable
zero elements of".This means that,(z) = ple 27 for violation probabilitye, we can use Corollary 1 to minimally

any z > 0. Similar results have been obtained fqr, i.e., size an ESS so that the target output pow#r can be
0 - o guaranteed with a failure probability of less thanTo do
er(z) = pre” 7% ei(x) =pie ", (12) so, we fix the storage siz& (starting fromB = 0) and

wherep!? anda; are, respectively, computed in a similar wayor the givenD*, we compute the corresponding violation
as forp%. and ar, by replacingSy by S — Sy and Gy by probability e* from Eg. (19). Ife* > &, we increase the size

G, — G and repeating all the above steps. of §t0rag_eB with a _small valué and repegt th*e same _step
Combining Egs. (11)-(12), for any > 0, we have _untll we find the minimum valu_e oB for whiche* <é. ltis
important to note that depending on the valuessfandé,
Primax (Ga(s, t) — 5(s,1)) > o} there might not exist any ESS size (even infinite) to guaeante
. - _ * < g. A trivial example could be whe*(s,t) is always
< 0 aTxT 0 1T € — . bl it
- zlﬁg:a (pre tre ) (13) larger than the average of the solar input powes, ¢) in any
0 CTEZT) . [Cre=r S , _time ir_1terva| [s,t_]. In this case, we say th_e pa@D*,_e*) _is
=(ar+a) | — — e «iter”  infeasible meaning that even an ESS of infinite size is not
or o helpfuP
pfu
:=¢(o)
(14) VI. EVALUATION
where we use Lemma 3 from [7] to obtain the last line. In this section, we evaluate our model with respect to some
existing models and also to the simulation results given the
V. SOLAR SHAPING ANALYSIS whole data trace in advance. We use the dataset from the ARM

In this section, we use our solar power model to compuveebsite [1] fromC1 in SGP permanent site and for a large
the risk of power unavailability when shaping solar power ttme interval of10 years (from2002 to 2011). We useb years
a target output function. We adopt the performance bounfithis dataset2002-2006) to extract the statistical properties
formulation from our earlier work in [11]. We have showrof solar power for all of the models including ours. Then, we
in that work that the system model in Fig. 1 is equivalent tase the nex5 years £007-2011) of this dataset for evaluation.

the simple scenario depicted in Fig. 6, whéfe D', and B’ We categorize the annual data into four seasons (spring,
are calledvirtual processesgiven by summer, fall, winter) and the days in each season into three
, . classes based on their sky coveunny, partly-cloudy, and
§(t) = 5(t) — A =n)S(t) — D*(1)l+ cloudy. As a result, each day in a year belongs to ond Df
—n[S(t) = D*(t) — acl+, (15) profilesbased on its season and sky cover.
D'(t) = D*(t), (16) We use the solar shaping scenario illustrated in Fig. 1 with
B' = B x DoD, 17) @ simple On-Off target output power: For each (season-sky
cover) profilep, D*(t) = K, in the middle of the day for an
where we have safely assumed that (¢) —S(t) — aal+ =0 interval of sizeT,,, hours (On period), wher#, is a constant,

in Eq. (16), knowing that the storage discharge rate limifs and D+ (¢) = 0 for the rest of the day (Off period). We choose

is not typically a constraint in the existing technologi€his Ga(s,t) = D'(s,t) as suggested in Corollary 1. Moreover, we
simple model leads to a loss of power formulation given ighoosez, to be the average power over the entire On period
Theorem 1 in [11], which we use in the following corollaryr; = The rest of the parameters are computed as described in
for solar power shaping (Please refer to the appendix for thgctions IV, V.

proof): In all examples, we assume a solar PV panel of §izé&

Corollary 1 (Solar power shaping)Suppose that a solar PV with PV efficienc_yozm.: 0.20. The storage technology is cho-
panel, equipped with a storage of siBeand parametersd,, S€N to be a Lithium-ion battery of siz®0KWh. From [11],
aq, 1, DoD), is used to provide a target output powdr (1) We know thatac(W) = B(Wh)/3(h), aa(W) = 5a.(W),

. . . f
at any “”?e slott (Fig. 1). Let, the Vlrtual, pOW(_%I’ sourcé “Note that this constant exists, because= 1 always satisfies Eq. (18).
and the virtual OUtp.ut targeD b.e as def!ned in Egs. (15).' 8From Eq. (19), we observe that is monotonically decreasing iBy and
(16). Suppose that, is the bounding function of the dynamicconsequently inB (B is non-decreasing ).

sample path envelop®;(s,t) = D'(s,t) on S’ for any s and SFrom Eg. (19), we observe that is monotonically increasing ih* ..
t. Lete, be a constant séltisfying ’ When we talk about storage sizing for a target output poérwith an

allowable violation probability¢ in the rest of the paper, we implicitly assume
Pr{Dl(t) > S'(t)} < &0 (18) that (D*, €) is a feasible pair.
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Fig. 7: Evaluating solar power models: Probability of loss of power as a function of output power tie interval of10am-2pm.

0.85, and DoD = 0.8 for Lithium-ion batteries. The
200 :
— Simulation

7’] =
state-of-charge at the beginning of each day is computed
emulating the battery state of charge in the previous days. - - -G-Envelope model
We include four curves in most of the plots: - «-CSI model
150{ - - Our model J

1) Simulation: We use direct simulation assuming that wi

2) CSl-based model:We have access to botfy and Icg R

have the entire trace in advance. This providéiine

optimalvalues for that given trace and holds as a benc
mark to evaluate other methods. Indeed, with simulatir
the entire trace we can exactly compute the loss of pow
probability for any target output power and the minimun
storage size for a given output power and a violatio

probability (for a given trace).

Output power (W)
S
o

[
o
T

0 200 400 600 800 1000

in our dataset; hence we can compute CSI at any tirr
Battery size (Wh)

We collect the values of CSI for the first half of our
dataset and fit a hyper-exponential distribution to CSi . _
measurements at any time instant. Assuming that CSIF¥. 8: Storage sizing: The target output power for a given storage
a Lévy process, and using Eq. (3), we simulaefrom size with probability larger thaf9% and in a cloudy winter day.

Eq. (3) for the second half of our dataset. Then, using
this generated trace, we compute the quantiles {fr j, the figure). The second interesting observation hereas th

using simulation on the generated trace. both the CSl-based model and the general envelope-based

3) G-Envelope model: Solar power is characterized by anodel in a sunny summer day underestimate the available

4) Our model: As described in Sections IV, V.

sample path envelopg(1) = mino<, D'(s, s +1) and & poper as we consider the time interddlam2pm. This is the
hyper-exponential distribution as the violation prob@pil (gt of an inaccurate characterization of the diurnacfin
in the sense of Eq. (5). We then use the uni-variate speqighse two models. They cannot completely capture the fatt th

case of our analysis from Section V to compute an UpP@{e solar irradiance is maximized in the time interval 6am-
2pm. In addition, the significant difference between Fig. iid a

Fig. 7b illustrates the existence of a strong seasonalithén
solar power process and this in turn reveals the importafhce o
having different profiles for each season and sky cover.

bound ons*.

A. The accuracy of our model

In this section, we evaluate the accuracy of our model with

respect to the other models and to the simulation results. \Re Storage sizing
compare the loss of power probability estimated using eéch oIn this section, we study the accuracy of our analysis in

the models. In Fig. 7 we choose the On period tolbam-

terms of storage sizing in a cloudy winter day. Similar to the

2pm. This graph shows that our model outperforms the othgrevious example, we assume tH&t, is the time interval

existing ones significantly, and it achieves tight boundsita 10am-2pm. We fix the violation probabilit* to be 10~2.
closely follows the offline optimal values (labelled sintida Then, we compute the minimum storage size which satisfies
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Fig. 9: The optimal size of the time interval: The guaranteed total
energy harvested with probability larger thag% as a function of

total size of the time interval in a summer day. The smalllegshow

the size of the time intervals for which the total harvestamgrgy is

maximized.

this constraint using our method and compare it with oth
exiting methods and the offline optimal (please see the dem

following Corollary 1 to see the steps of storage sizing gisin

OACH

simply assumed that the border time scélés equal to the
size of the time interval and obviously we lose accuracy as
the size of the time interval increases.

VIl. CONCLUSION

Integrating solar power in the grid requires solar power to
be shaped to a manageable form. One of the best methods
to convert the intermittent solar power to a reliable output
power is to use energy storage devices. An important relsearc
guestion is how to find the minimum ESS size of a system
to ensure that a target output function can be provided,ewhil
keeping the loss of power risk below an allowable threshkbld
Simulating the SoC analysis can be used to estimate the risk
of loss of power using quantiles; however, this method needs
large data trace and it has a huge time complexity as it must be
repeated for any change of parameters. To account for these
shortcomings, analytical methods can be alternativelyd.use
Unfortunately, the existing analytical methods cannot pete
with the simulation methods as they are overly conservative
A tight analytical framework needs a meticulous solar power
modelling. In this paper, we propose a precise analyticialrso
grc_)wer model by carefully studying and separating the ugderl
ing processes of solar power and describing each, indilidua
sing this model, we are able to size the storageafortarget
output function; something which was not efficiently doable

With the state-of-the-art. Our numerical examples illatgr

our method). Fig. 8 shows that storage sizing using o
that our solar power model is precise, closely following

model is near-optimal, meaning that it almost matches t
offline optimaj computed assuming that we have the entlrt e simulation results, and considerably outperforming th
evious ones.

future solar power trace in advance (tagged as simulation
In contrast, we observe that the existing models (G-mO(PeI
and CSI model) significantly overestimate the required size REFERENCES
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APPENDIX
PROOF OFCOROLLARY 1

case for our application as we discussed. Supposelfidt=

t

where

k(t)_{OB

andle.p, = 1 if expr is true andl..,, = 0, otherwise.

EqQ. (20) can be extended to account for a non-ideal storage
system using virtual process#$, D’, and B’ as described in
Egs. (15-19). By picking two specific values foi(= ¢t —1 and
= 0) in the minimization in Eq. (20), we have the following

t>0

t=0, (1)

inequality for anyt > 1

I(t) < min([D’(t 1) = St — 1,04,

/ !
max ([D'(s,6) = §'(s,t) = Bol)).  (22)
where in the second term, we use the fact H(a)—BgISZO >
By for any s > 0 andt¢ > 0. Using Eg. (22), we can prove
the corollary as follows:

Pr{l(t) > 0}

< Pr{min| [D'(t) = S (V)]

[D'(s,t) — S'(s,t) — Bol+ | | >0%  (23)

max
0<s<t

< min | Pr{[D'(t) — S'(t)]+ > 0},

Pr {Org?i(t[D/(s,t) — S'(s,t) — Boly > O} (24)

< min (50,131"{ max (Ga(s,t) — S'(s,t)) > BO}> (25)

0<s<t

< min (g, &5 (Bo)) (26)

=" (27)

3

where we use Eg. (22) in the second line. Eq. (24) is an
upper bound on Eg. (23) using the fact thatX NY) <
min(P(X), P(Y)) for any eventsX andY. We use Eq. (18)

to obtain the first term in Eq. (25). To obtain the second terms
in_Eqg. (25) and Eg. (26), we use the corollary assumption that
f(s,t) = D'(s,t) is a dynamic lower envelope off’ with
bounding functiore, in the sense of Eq. (6). We finally, use
the definition ofs* from Eq. (19) to obtain the last line.

B — By) represents the initial deficit charge of the battery. The
existing recursive equations assume tBgt= 0. To account
for non-zeroB¢, one can add3{ as additional discharge at
time zero, i.e.,D(s,t) + BiI,—, instead ofD(s,t), and then
safely setB¢ = 0. Thus, given an ideal storage.{ «q = 0,

n = 1), the exact loss of power formulation from [27] can be
refined as follows to account for the initial state of charge

[(t) = mi
(t) = min,

max_ ([D(s,t) — S(s,t) — k(t) + BI04,

u<s<t

D(u,t) — S(u,t) + k(u) — k(t) + Bil,—o) |,
(20)



