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Abstract—The focus of our work is the use of an energy
storage system (ESS) to integrate solar energy generators into the
electrical grid. Although, in theory, an ESS allows intermittent
solar power to be shaped to meet any desired load profile, in
practice, parsimonious ESS dimensioning is challenging due to
the stochastic nature of generation and load and the diversity
and high cost of storage technologies. Existing methods for
ESS sizing are based either on simulation or analysis, both
of which have shortcomings. Simulation methods are compu-
tationally expensive and depend on the availability of extensive
data traces. Existing analytical methods tend to be conservative,
overestimating expensive storage requirements. Our key insight
is that solar power fluctuations arise at a few distinct time scales.
We separately model fluctuations in each time scale, which allows
us to accurately estimate ESS performance and efficiently size
an ESS. Numerical examples with real data traces show that our
model and analysis are tight.

I. I NTRODUCTION

Traditionally, energy generators are finely controlled to
match the fluctuations in aggregate demand. Unfortunately,
due to their intrinsic stochastic nature, solar energy generators
cannot be controlled in this way, making it difficult to integrate
them into the grid. Specifically, solar fluctuations can harm
power quality, increase the need for regulation, and compli-
cate load following and unit commitment [4]. Hence, these
fluctuations must be mitigated [9], [10], [21], [14].

Several approaches to integrating stochastic energy gen-
erators have been proposed in prior work [8]: geographical
diversity, complementary energy sources (e.g., wind and solar),
demand response, oversizing the capacity of the renewable
energy sources, forecasting generator variations, and using
energy storage systems (ESS) [22]-Ch.12. Using an ESS is
interesting, in that an ESS provides flexibility to meet several
of the integration challenges listed above [2]. Thus, the focus
of our work is in ESS dimensioning to match stochastic supply
with stochastic demands.

In theory, energy from solar generators can be stored in an
ESS and withdrawn as necessary to match any desired demand
with only a small probability ofloss of power. In practice,
however, this solar shaping is challenging due to the diverse
physical constraints of storage technologies and their uniform
high cost. For each ESS technology, we want to compute the
minimum size which can meet demands with an acceptable
risk of loss of power [6], [16], [23].

There are two existing approaches to size an ESS for solar
energy generators.
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• Simulations: Given datasets of solar irradiance and de-
mand profiles, it is possible to simulate an ESS of a
particular size that is based on a particular storage tech-
nology to determine the probability of loss of power [24].
For a given ESS technology, this simulation must be
repeated for each storage size until the minimum ESS size
that meets the requirements is obtained. Although this
method is widely used due to its simplicity and precision,
it has two drawbacks. First, to obtain small values of loss
of power probabilities, the simulation must incorporate
sufficiently large datasets1. Second, simulations need to
be re-run for each choice of parameter values, such as
the storage size, which is computationally expensive and
cumbersome.

• Analytical methods: They mathematically model a
stochastic solar generator, an ESS, and stochastic de-
mands to estimate the loss of power probability. The
existing analytical methods [11], [26], [27], [28] are
more efficient than repeated simulations, but have two
drawbacks. First, they are based on strong assumptions,
throwing into question the validity of the obtained results.
Second, they are often too conservative, resulting in
oversizing of the ESS.

What is desirable, therefore, is an analytical model that
makes few assumptions and closely approximates the results
from simulations, thus providing the best of both worlds.

Our key insight is that an analytical model for an ESS
used for solar power shaping must take into account the three
intrinsic time scales over which solar power fluctuates. First, at
the time scale of a day, solar power varies due to the positionof
the sun in the sky. Second, long-term cloudiness causes power
fluctuations at time scales ranging from a few hours to about
10 minutes. Third, there is a high-frequency power modulation
due to clouds at time scales faster than about 10 minutes. This
is demonstrated vividly by the power spectral density of solar
power (Fig. 3) [3] [12]. Therefore, we model the impact of
clouds by multiple stochastic processes at different time scales.

We have used this analytical model, along with a unified
analytical ESS model from our prior work [11], to accurately
estimate loss of power performance and optimally size an ESS.
Our key contributions are:

1) We provide a new analytical model for solar power
shaping which characterizes both the short-term and long-
term variations in daily solar power.

2) Given any feasible pair of target output power shape and
allowable loss of power threshold, we provide techniques
to compute a near-optimal ESS size using our unified

1For instance, if the target loss of power probability is 1 dayin 10 years,
the datasets must be for a period of at least 10 years, if not longer.
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Name Description

Ig(t) The actual solar insolation at timet (W/m2)
ICS(t) The clear sky insolation at timet (W/m2)

αpv Photovoltaic coefficient
D(t) ESS output power at timet (W)
D∗(t) ESS target output power at timet (W)
S(t) Solar power at timet (W)

ST (t) Solar power aggregate in time intervals of sizeT (W)
GT (t) Ensemble average ofST (t) (W)

G Statistical sample path envelope onS (W)
Gd Dynamic sample path upper envelope onS (W)

CSI(t) Clear sky index at timet (
Ig(t)

ICS (t)
)

B Storage size (Wh)
αc(αd) Storage charging (discharging) power limit (W)

η Storage efficiency
DoD Storage depth of discharge
ε∗ The allowable risk of loss of power

TABLE I: Notations

min

D(t)S(t)

[S(t) - D*(t)]+

B(DoD)

b(t)

x

ƞ

min

to the following for an ideal storage (i.e., αc c/αd

+

D*(t)

[D*(t) - S(t)]+

Fig. 1: A renewable energy sourceS equipped with a storage
to provide a target output powerD∗. The storage physical
constraints areαc, αd, η, and DoD. The actual output power
is D.

ESS model.
3) Using real datasets, we show that the results from our an-

alytical model reasonably match those from a simulation-
based approach where the complete dataset is known
ahead of time (we call it offline optimal) and considerably
outperform prior analytical models.

The rest of the paper is organized as follows. In Section II,
we discuss our system model and define the problem. We
review the existing solar power models which can be used
for solar shaping in Section III. We describe our solar power
model in Section IV. We then formulate and solve the solar
power shaping in Section V. We evaluate our approach in
Section VI, and conclude the paper in Section VII.

II. PROBLEM DEFINITION

The stochastic process under study here issolar power,
which is a fluid-flow (i.e., can take any value) process.
We assume a discrete-time model, where time is slotted
t = 0, Tu, 2Tu, . . ., with Tu being the time unit. To simplify
notation, we dropTu from our formulation by assuming
Tu = 1. Generalizing the formulas for anyTu is a matter of
additional notations. The goal is to shape the fluctuating solar
power to a target output power using a storage system. Denote
by S(t) and D∗(t), respectively, the available solar power
and the system target output power at timet. To simplify
notation, we writeD∗(s, t) andS(s, t) to, respectively, mean
∑t

τ=s+1 D∗(τ) and
∑t

τ=s+1 S(τ) (e.g.,S(t − 1, t) = S(t)).

We illustrate our energy storage system (ESS) model in
Fig. 1 (Please see [11] for the details). Solar power is used to
serve the target output power directly as much as possible (i.e.,
it departs the system without going through the storage). If,
in a given time slott, the available solar power is insufficient
(i.e., S(t) < D∗(t)), the energy stored, if any, can be used to
make up the difference. Moreover, if the available solar power
in a time slot t is larger than the target output power (i.e.,
S(t) > D∗(t)), then the surplus energy ((S(t) − D∗(t))Tu) is
stored in the storage, if it is not yet full. All incoming power
exceeding storage’s charging rate limitαc is dropped. The
discharging rate isαd. Moreover, the storage loses a fraction
of 1 − η of the total energy being stored in the storage due to
storage inefficiency. Finally, the storage lifetime constraint is
met if only a DoD fraction≤ 1 of the entire storage is used2.

Let the actual output power from ESS at any timet be
D(t). Then,D(t) ≤ D∗(t) due to the ESS limitations such as
inefficiency, leakage, and finite size. An important research
problem is to find the minimum storage size and the best
storage technology to guarantee the target output power at
any timet (i.e., D(t) = D∗(t)) with an allowable riskε∗. In
other words, at any timet, we must have

Pr{D(t) < D∗(t)} ≤ ε∗. (1)

There are three ways to reach this goal:

• Direct simulation: Given a large enough solar power
measurement trace, one can simulate the charg-
ing/discharging process in the ESS system in Fig. 1 for
each storage technology and iterate on the storage size to
find the minimum size which satisfies Eq. (1).
Direct simulation is the most accurate method, but has
major weaknesses. First, very large datasets are required
for small values ofε∗. Second, the complexity of this
method is cumbersome given that for each storage tech-
nology and size, we need to repeat the simulation for the
entire large data trace.

• Simulation with a generated data-trace: If the available
dataset is not large enough, a large data trace can be
generated by simulating the statistical properties of the
given data trace. Then, the rest is identical to the direct
simulation method. This method is not as accurate as
the direct simulation due to possible inaccuracy of the
generated data trace.

• Analysis: This method computes an analytical upper
bound onPr{D(t) < D∗(t)}. This upper bound is a
function of the statistical properties of the solar power, the
type, and the size of storage. This method does not suffer
from the shortcomings of the direct simulation method.
However, it might lead to oversizing if the model and
formulations are not tight.

In this paper, we assume that the given measurement dataset
of solar power is not large enough to use direct simulation
for the target loss of power probabilities. Hence, we must
use either of the two other methods (listed above) to model
solar power based on the limited measurement set. We call

2The energy stored in the storage decreases due to self-discharge. However,
for battery storage systems this value can be safely neglected.
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Fig. 2: Illustrating the global and the clear sky irradiance for a sample
day.

solar power models which are used to generate traces (second
method) asfeature modelsand those to compute performance
bounds (third method) asstatistical models. We discuss the
existing models of each category in the following section.

III. B ACKGROUND AND RELATED WORK ON SOLAR POWER

MODELLING

The clear sky irradiance, denotedICS , is the amount of
power received from the sun per square meter (W/m2) in the
absence of clouds, shadows, and atmospheric particulates.It
is easy to mathematically model this value at any point on
the surface of the globe for a given time of day, day of year,
and surface tilt angle [5]. In contrast, theglobal irradiance,
denotedIg, is the amount of power that is actually received by
a photovoltaic (PV) panel. PV output power is almost linearly
proportional to the global irradiance, so that solar powerS
generated by a panel of unit size at any timet is given by

S(t) = αpv × Ig(t) , (2)

whereαpv is the efficiency of the panel.
The ratio of the global irradiance to the clear sky irradiance

(typically, but not always, smaller than 1) is called theClear
Sky Indexor CSI.

A. Frequency-domain analysis

Solar power fluctuations arise from three stochastic pro-
cesses, each operating in a different time scale [12] as shown
in Fig. 3:

1) Short time scale variations:This process models fluc-
tuations in irradiance when the direct solar beam is
blocked by clouds. This typically results in attenuation
that changes rapidly over time, but, in some cases, can
actually lead to an enhancement of solar power [19].
It has been found that solar power fluctuations due to
inhomogeneous small clouds happen on a time scale
shorter than 10 minutes. This corresponds to the rightmost
linear section in Fig. 3.

Fig. 3: Power spectrum of the 1min values of the global solar
irradiance [12].

2) Large time-scale variations:Long-term cloudiness that
occurs for periods between 10 minutes and 9 hours
are modeled by this stochastic process. Long-term solar
power fluctuations have substantially different statistical
properties than the short-term ones because larger time
intervals reflect the aggregate impacts of all attenuations
and enhancements [25], [19]. The larger the size of
the cloud, the larger the size of the time interval. This
corresponds to the middle linear section in Fig. 3.

3) Diurnal: This stochastic process corresponds to the24-
hour and12-hour time scales and is due to the daily transit
of the sun in the sky, with the morning and evening solar
power being roughly equal3. This corresponds to the two
sharp peaks in Fig. 3.

This discussion indicates that an accurate solar power model
must separately characterize diurnal, short-term, and long-term
variations. We now present the existing models.

B. Existing models for solar power

We categorize the existing models intofeature modelsand
statistical models. Feature models extract certain features of
solar power production from a dataset. These traces can then
be used for performance analysis through simulation. Statisti-
cal models, on the other hand, are not used to generate traces.
They only extract some statistical characteristics from the
dataset and use those characteristics to formulate performance
metrics. In the following, we review some of the most-widely
used models of each category.

1) Clear Sky Index-based model (feature model):It has
been shown that at large time scales (larger than hourly),
the global irradiance can be modelled accurately [15] by
separately modelling clear sky irradiance (ICS) [5], [13] and
the clear sky index (CSI) (the ratio of the global irradiance
to the clear sky irradiance) [17], [20]4. Clear sky index is

3The second peak corresponds to the length of a typical day, which is 12
hours for the location studied in this graph.

4A similar, older model characterizes theclearness number(instead of
CSI), which is the ratio between the global irradiance and the extraterrestrial
irradiance (the irradiance measured outside the atmosphere by satellites).
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Fig. 4: Comparing the actual solar irradiance with the CSI-based
generated trajectory in a cloudy winter day.

characterized under the assumptions that it is a Lévy process
(stationary and independent increment with a continuous prob-
ability) with bi-modal distribution at any time instant [19],
[25]. Then, the global irradiance at any given time is given by

Ig(t) = CSI × ICS(t). (3)

Solar power modelling for smart grid applications deals
with higher time resolutions than hourly (e.g., every minute).
Unfortunately, CSI-based models are not accurate at these time
scales due to the assumption of CSI being a Lévy process,
which becomes less accurate in smaller time scales. Fig. 4
shows how erroneous a trajectory generated based on CSI
method can be, compared to the actual solar irradiance data
trace.

2) General envelope-based model (an analytical model):
In this model, the important statistical properties of solar
power which impact the charging/discharging processes are
represented by envelopes. To see the nature of the envelopes
required, consider an ideal ESS with infinite storage size, solar
power S, and target output powerD∗. Using the mapping
between the state of charge (SoC) in such a system and the
buffer content in packet switch networks, we have from the
well-known Reich’s equation:

SoC(t) = max
0≤s≤t

(S(s, t) − D∗(s, t)) . (4)

From Eq. (4), if we know a lower bound onmax0≤s≤t S(s, t),
then we can compute a lower bound (envelope) on the SoC.
Several recent papers [26], [27], [28], use the well-known
statistical sample path envelopes[18] for this matter; solar
power S is characterized by a statistical sample path lower
envelopeG and a bounding functionε such that at any time
t ≥ 0 and for anyσ

Pr
{

max
s≤t

(G(t − s) − S(s, t)) > σ
}

≤ ε(σ). (5)

In this model,G characterizes the underlying deterministic
behaviour of the cumulative solar power andε characterizes
the stochastic variations (i.e., the likelihood that cumulative
solar power is less thanG).

This model suffers from the following shortcomings:
1) Not accounting for the diurnal effect: Unlike the CSI-
based model, this model cannot suitably accommodate the
diurnal effect as described above. Due to the fact thatG is a
uni-variate function, this model can be a good candidateonly
for a stochastic process which modulates a function which
is only dependent on the size of the time interval (and not
the position), or equivalently, a constant rater at any time
instant, i.e.,G(t) = rt. Therefore, this model is not a good
candidate for solar power as the deterministic diurnal effect of
solar power is a function of both the length and the position
of each time interval.
2) No separation between the short-term and long-term
variations (the knee point at 10min in Fig. 3): The general
envelope model characterizes both the long-term and the short-
term variations, simultaneously, throughε and for this reason
cannot be precise.

IV. A NEW ANALYTICAL MODEL FOR SOLAR POWER

SHAPING

In this section, we propose a new envelope model. This
model adapts the general envelope model to enable a separate
characterization of the three underlying processes of solar
power (diurnal, long-term, and short-term variations).

To account for the diurnal effect, we replace the uni-
variate sample path envelope function in the general envelope
model by a bivariate envelope called thedynamic sample path
envelope. A bi-variate functionGd(s, t) is a dynamic sample
path envelope on solar powerS, if it satisfies

Pr
{

max
s≤t

(Gd(s, t) − S(s, t)) > σ
}

≤ ε(σ) (6)

at any timet and for anyσ ≥ 0.
As observed in Fig. 3, the statistical properties of short time

scale (1min-10min) is different from large time scale (10min-
9h). Hence, we separate the two regimes: short time scale with
time unit of 1 and large time scale with time unitT > 1. In
large time scale regime, solar powerST is the average ofS
in time slots of sizeT (see Fig. 5a), i.e., for any integerj

ST (t) =

∑(j+1)T

τ=jT +1 S(τ)

T
∀t : jT < t ≤ (j + 1)T. (7)

The variations inST reflect the large time scale variations
(10min-9h in Fig. 3) and the variations inS − ST reflect the
variations in short-time scale (1min-10min in Fig. 3).

We characterize the variations in the large time scale by
a dynamic envelopeGT (s, t) with bounding function5 εT ,
satisfying

Pr
{

max
s≤t

(GT (s, t) − ST (s, t)) > x
}

≤ εT (x). (8)

for anyx ≥ 0. In addition, suppose thatGd(s, t) − GT (s, t) is
the lower dynamic envelope which characterizes the short-term
variations with bounding functionε1. Thus, for anyx ≥ 0

Pr
{

max
s≤t

((Gd(s, t) − GT (s, t)) − (S(s, t) − ST (s, t))) > x
}

≤ ε1(x). (9)

5GT is defined such that it can vary only at time instantst = jT for any
j = 0, 1, . . ..
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2. MODELLING THE SOLAR POWER

GT

Solar irradiance has two components: (1) the diurnal irradi

2. MODELLING THE SOLAR POWER

ST

Solar irradiance has two components: (1) the diurnal irradi2. MODELLING THE SOLAR POWER

Gd

Solar irradiance has two components: (1) the diurnal irradi
T 2T 3T 4T 5T

Time of the day

S

S
o
la
r 
ir
ra
d
ia
n
c
e

!
"
#$
%&
'%
%$
(
'$
)
*+
&,
-
./
0
1

(a) Terminology

T 2T 3T 4T 5T
Time of the day

Y = 0

S
T

−
G

T

T
h
e
st
o
c
h
a
st
ic
p
ro
c
e
ss
u
n
d
e
r
st
u
d
y
h
e
re
is

(b) T-minute solar power modelling

T 2T 3T 4T 5T
Time of the day

Y = 0

S
−

S
T

−
(G

d
−

G
T

)
T

he
st

oc
ha

st
ic

pr
oc

es
s

un
de

r
st

ud
y

he
re

is

(c) 1-minute solar power modelling

Fig. 5: Our solar power model: Our terminology and the two-stage break-down in our model.

Then, we can obtain a bounding function corresponding to
the dynamic envelopeGd on S as follows:

Pr
{

max
s≤t

(Gd(s, t) − S(s, t)) > σ
}

≤ inf
x1+xT =σ

(

Pr
{

max
s≤t

(GT (s, t) − ST (s, t)) > xT

}

+ Pr
{

max
s≤t

((Gd(s, t) − GT (s, t))

−(S(s, t) − ST (s, t))) > x1

})

, (10)

≤ inf
x1+xT =σ

(εT (xT ) + ε1(x1))
︸ ︷︷ ︸

:=ε(σ)

, (11)

where in the second line, we use the fact thatPr(A + B >
a + b) ≤ Pr(A > a) + Pr(B > b) for any random variables
A and B and any constantsa and b. In the last line, we use
Eqs. (8)-(9).

The first term in Eq. (10) is in the large time scale regime
as bothST and GT can vary only at time instantst = jT
for any j = 0, 1, . . .. The second term in Eq. (10) is in the
short time scale regime. Thus, Eq. (10) breaks the model into
long-term and short-term variations.

In summary, we model solar power by a dynamic envelope
Gd and a bounding functionε in terms of Eq. (6). The strength
of our analytical model is that, unlike previous models, it
can separately characterize the three underlying time-scales
of solar power by:

1) Accounting for the diurnal effect: using a bi-variate
envelope functionGd.

2) Separate characterization of the short-term and long-
term variations: using two time scales in describing the
bounding functionε as in Eq. (10).

There are two free parameters in our solar power model:T
andGT . Proper choices of these parameters lead to an accurate
solar power characterization.

A. How to choose the free parameters?

Minimizing the modelling error overT and GT is a non-
convex problem. However, here are some good choices:

• The choice of GT : GT represents the deterministic trend
(diurnal effect) of solar power. Two good candidates areGT =
ICS andGT being the historical average ofST . The latter one
is a great choice when a large dataset is available so that the
historical average can be estimated precisely. If large datasets
are not available, then the former one is a great choice asICS

can be estimated quite precisely using the existing models.
• The choice of T : The right choice ofT is crucial as it
determines the boundary between the small and large time
scales in our model. Indeed, the optimal value ofT must
coincide with the knee point in Fig. 3 (around 10min) and
depends on the location, PV panel sizes, and the cloud
type/speed in that location.

B. How to characterize the bounding functionε

For a given solar power datasetS, an envelopeGd, and for
fixed choices ofGT andT , we want to characterize a bounding
function ε satisfying Eq. (6). We do so for a specific dataset,
i.e., the U.S. Department of Energy’s Atmospheric Radiation
Measurement (ARM) [1] dataset, which is freely available. We
characterizeεT , ε1, and eventuallyε.

The bounding functionεT is characterized as follows: We
want to construct a dynamic sample path envelope on solar
power in each day. Hence, solar power in each day in our
dataset can be considered as a trajectory. Construct a setY
with elementsY i,t chosen at timet ≥ 0 corresponding to a
trajectoryi such that

Y i,t = max
0≤s≤t

(GT (t − s) − Si
T (s, t)),

where we use superindexi to refer to the trajectoryi. From
Eq. (8),εT can be chosen to be the Complementary Cumula-
tive Distribution Function (CCDF) of any distribution thatfits
Y . We found (through QQ-plots which are not shown here
due to lack of space) that fitting a distribution of the form
fY (x) = (1−p0

T )δ0(x)+p0
T αT e−αT x is a good choice6; p0

T is
the ratio of the non-zero elements inY andαT is the parameter

6δ0(x) = 1 if x = 0 and δ0(x) = 0 if x 6= 0.
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Fig. 6: Converting a non-ideal storage model to an ideal one by
defining virtual sourceS′, demandD

′, and storage sizeB′.

obtained when fitting an exponential distribution to the non-
zero elements ofY .This means thatεT (x) = p0

T e−αT x for
any x > 0. Similar results have been obtained forε1, i.e.,

εT (x) = p0
T e−αT x; ε1(x) = p0

1e−α1x, (12)

wherep0
1 andα1 are, respectively, computed in a similar way

as for p0
T and αT , by replacingST by S − ST and GT by

Gd − GT and repeating all the above steps.
Combining Eqs. (11)-(12), for anyσ ≥ 0, we have

Pr{max
s≤t

(Gd(s, t) − S(s, t)) > σ}

≤ inf
x1+xT =σ

(
p0

T e−αT xT + p0
1e−α1x1

)
(13)

= (αT + α1)

(
p0

1

αT

) αT
(α1+αT )

(
p0

T

α1

) α1
(α1+αT )

e
−

α1αT
α1+αT

σ

︸ ︷︷ ︸

:=ε(σ)

,

(14)

where we use Lemma 3 from [7] to obtain the last line.

V. SOLAR SHAPING ANALYSIS

In this section, we use our solar power model to compute
the risk of power unavailability when shaping solar power to
a target output function. We adopt the performance bound
formulation from our earlier work in [11]. We have shown
in that work that the system model in Fig. 1 is equivalent to
the simple scenario depicted in Fig. 6, whereS′, D′, andB′

are calledvirtual processes, given by

S′(t) = S(t) − (1 − η)[S(t) − D∗(t)]+

− η[S(t) − D∗(t) − αc]+, (15)

D′(t) = D∗(t), (16)

B′ = B × DoD, (17)

where we have safely assumed that[D∗(t) − S(t) − αd]+ = 0
in Eq. (16), knowing that the storage discharge rate limitsαd

is not typically a constraint in the existing technologies.This
simple model leads to a loss of power formulation given in
Theorem 1 in [11], which we use in the following corollary
for solar power shaping (Please refer to the appendix for the
proof):

Corollary 1 (Solar power shaping). Suppose that a solar PV
panel, equipped with a storage of sizeB and parameters (αc,
αd, η, DoD), is used to provide a target output powerD∗(t)
at any time slott (Fig. 1). Let the virtual power sourceS′

and the virtual output targetD′ be as defined in Eqs. (15)-
(16). Suppose thatεs is the bounding function of the dynamic
sample path envelopeGd(s, t) = D′(s, t) on S′ for any s and
t. Let ε0 be a constant satisfying

Pr{D′(t) > S′(t)} ≤ ε0 (18)

at any t ≥ 07 then, this system can provide the target output
D∗ with the risk of failingε∗, given by

ε∗ = min (ε0, εs(B0)) , (19)

whereB0 is the initial state of charge.

Remark: Corollary 1 can also be used for storage sizing:
Given a target output powerD∗ and a maximum allowable
violation probability ε̄, we can use Corollary 1 to minimally
size an ESS so that the target output powerD∗ can be
guaranteed with a failure probability of less thanε̄. To do
so, we fix the storage sizeB (starting from B = 0) and
for the givenD∗, we compute the corresponding violation
probability ε∗ from Eq. (19). If ε∗ > ε̄, we increase the size
of storageB with a small value8 and repeat the same step
until we find the minimum value ofB for which ε∗ ≤ ε̄. It is
important to note that depending on the values ofD∗ and ε̄,
there might not exist any ESS size (even infinite) to guarantee
ε∗ ≤ ε̄. A trivial example could be whenD∗(s, t) is always
larger than the average of the solar input powerS(s, t) in any
time interval [s, t]. In this case, we say the pair(D∗, ε∗) is
infeasible, meaning that even an ESS of infinite size is not
helpful9

VI. EVALUATION

In this section, we evaluate our model with respect to some
existing models and also to the simulation results given the
whole data trace in advance. We use the dataset from the ARM
website [1] fromC1 in SGP permanent site and for a large
time interval of10 years (from2002 to 2011). We use5 years
of this dataset (2002-2006) to extract the statistical properties
of solar power for all of the models including ours. Then, we
use the next5 years (2007-2011) of this dataset for evaluation.

We categorize the annual data into four seasons (spring,
summer, fall, winter) and the days in each season into three
classes based on their sky cover:sunny, partly-cloudy, and
cloudy. As a result, each day in a year belongs to one of12
profilesbased on its season and sky cover.

We use the solar shaping scenario illustrated in Fig. 1 with
a simple On-Off target output power: For each (season-sky
cover) profilep, D∗(t) = Kp in the middle of the day for an
interval of sizeTon hours (On period), whereKp is a constant,
andD∗(t) = 0 for the rest of the day (Off period). We choose
Gd(s, t) = D′(s, t) as suggested in Corollary 1. Moreover, we
chooseGT to be the average power over the entire On period
Ton. The rest of the parameters are computed as described in
Sections IV, V.

In all examples, we assume a solar PV panel of size5m2

with PV efficiencyαpv = 0.20. The storage technology is cho-
sen to be a Lithium-ion battery of size500KWh. From [11],
we know thatαc(W ) = B(Wh)/3(h), αd(W ) = 5αc(W ),

7Note that this constant exists, becauseε0 = 1 always satisfies Eq. (18).
8From Eq. (19), we observe thatε∗ is monotonically decreasing inB0 and

consequently inB (B0 is non-decreasing inB).
9From Eq. (19), we observe thatε∗ is monotonically increasing inD∗..
When we talk about storage sizing for a target output powerD∗ with an

allowable violation probabilitȳε in the rest of the paper, we implicitly assume
that (D∗, ε̄) is a feasible pair.
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(a) Sunny summer days
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(b) Cloudy winter days

Fig. 7: Evaluating solar power models:Probability of loss of power as a function of output power in the interval of10am-2pm.

η = 0.85, and DoD = 0.8 for Lithium-ion batteries. The
state-of-charge at the beginning of each day is computed by
emulating the battery state of charge in the previous days.

We include four curves in most of the plots:

1) Simulation: We use direct simulation assuming that we
have the entire trace in advance. This providesoffline
optimalvalues for that given trace and holds as a bench-
mark to evaluate other methods. Indeed, with simulating
the entire trace we can exactly compute the loss of power
probability for any target output power and the minimum
storage size for a given output power and a violation
probability (for a given trace).

2) CSI-based model:We have access to bothIg and ICS

in our dataset; hence we can compute CSI at any time.
We collect the values of CSI for the first half of our
dataset and fit a hyper-exponential distribution to CSI
measurements at any time instant. Assuming that CSI is
a Lévy process, and using Eq. (3), we simulateIg from
Eq. (3) for the second half of our dataset. Then, using
this generated trace, we compute the quantiles (forε∗)
using simulation on the generated trace.

3) G-Envelope model: Solar power is characterized by a
sample path envelopeGd(t) = min0≤s D′(s, s + t) and a
hyper-exponential distribution as the violation probability
in the sense of Eq. (5). We then use the uni-variate special
case of our analysis from Section V to compute an upper
bound onε∗.

4) Our model: As described in Sections IV, V.

A. The accuracy of our model

In this section, we evaluate the accuracy of our model with
respect to the other models and to the simulation results. We
compare the loss of power probability estimated using each of
the models. In Fig. 7 we choose the On period to be10am-
2pm. This graph shows that our model outperforms the other
existing ones significantly, and it achieves tight bounds, as it
closely follows the offline optimal values (labelled simulation
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Fig. 8: Storage sizing:The target output power for a given storage
size with probability larger than99% and in a cloudy winter day.

in the figure). The second interesting observation here is that
both the CSI-based model and the general envelope-based
model in a sunny summer day underestimate the available
power as we consider the time interval10am-2pm. This is the
result of an inaccurate characterization of the diurnal effect in
these two models. They cannot completely capture the fact that
the solar irradiance is maximized in the time interval of10am-
2pm. In addition, the significant difference between Fig. 7a and
Fig. 7b illustrates the existence of a strong seasonality inthe
solar power process and this in turn reveals the importance of
having different profiles for each season and sky cover.

B. Storage sizing

In this section, we study the accuracy of our analysis in
terms of storage sizing in a cloudy winter day. Similar to the
previous example, we assume thatTon is the time interval
10am-2pm. We fix the violation probabilityε∗ to be 10−2.
Then, we compute the minimum storage size which satisfies
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Fig. 9: The optimal size of the time interval: The guaranteed total
energy harvested with probability larger than99% as a function of
total size of the time interval in a summer day. The small circles show
the size of the time intervals for which the total harvestingenergy is
maximized.

this constraint using our method and compare it with other
exiting methods and the offline optimal (please see the remark
following Corollary 1 to see the steps of storage sizing using
our method). Fig. 8 shows that storage sizing using our
model is near-optimal, meaning that it almost matches the
offline optimal, computed assuming that we have the entire
future solar power trace in advance (tagged as simulation).
In contrast, we observe that the existing models (G-model
and CSI model) significantly overestimate the required sizeof
the ESS. For example, for a constant target output power of
50W (during the On period), both the offline optimal and our
model compute the required size of the battery to be 100Wh,
which is substantially smaller than 300Wh obtained with the
G-Envelope model, or 1000Wh obtained with the CSI model.

Fig. 8 also shows that the benefit of increasing the size of
the storage (in terms of increasing the output power) is much
larger for small values of storage sizes. This is because by
adding ESS to the system the best we can expect is to ideally
have the average power as the output power. Thus, there will
be a point after which increasing the size of ESS is not useful
anymore.

C. The optimum time interval

In this section, we study how the size of theOnperiod (Ton)
affects the total energy harvested from the solar PV panels.
There is an inherent tradeoff in choosingTon, as the total
energy harvested is the product ofTon and the available power
(which is inversely proportional toTon). Fig. 9 illustrates the
total harvested energy as a function ofTon. The On period
is chosen to be of sizeTon and is symmetric over12noon.
The optimum time interval varies as a function of the sky
cover and the season as illustrated in Fig. 9. The graph shows
that our model can estimate the total harvested energy and the
optimalT highly accurately. We observe a higher accuracy of
our model for smaller values ofT in Fig. 9 and we start to
lose the accuracy asT increases. The reason is that we have

simply assumed that the border time scaleT is equal to the
size of the time interval and obviously we lose accuracy as
the size of the time interval increases.

VII. C ONCLUSION

Integrating solar power in the grid requires solar power to
be shaped to a manageable form. One of the best methods
to convert the intermittent solar power to a reliable output
power is to use energy storage devices. An important research
question is how to find the minimum ESS size of a system
to ensure that a target output function can be provided, while
keeping the loss of power risk below an allowable thresholdε∗.
Simulating the SoC analysis can be used to estimate the risk
of loss of power using quantiles; however, this method needsa
large data trace and it has a huge time complexity as it must be
repeated for any change of parameters. To account for these
shortcomings, analytical methods can be alternatively used.
Unfortunately, the existing analytical methods cannot compete
with the simulation methods as they are overly conservative.
A tight analytical framework needs a meticulous solar power
modelling. In this paper, we propose a precise analytical solar
power model by carefully studying and separating the underly-
ing processes of solar power and describing each, individually.
Using this model, we are able to size the storage forany target
output function; something which was not efficiently doable
with the state-of-the-art. Our numerical examples illustrate
that our solar power model is precise, closely following
the simulation results, and considerably outperforming the
previous ones.
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APPENDIX

PROOF OFCOROLLARY 1

The existing state of charge recursion equations assume that
storage is initially fully charged. This, however, is not the
case for our application as we discussed. Suppose thatBd

0 (=
B −B0) represents the initial deficit charge of the battery. The
existing recursive equations assume thatBd

0 = 0. To account
for non-zeroBd

0 , one can addBd
0 as additional discharge at

time zero, i.e.,D(s, t) + Bd
0 Is=0 instead ofD(s, t), and then

safely setBd
0 = 0. Thus, given an ideal storage (αc, αd = 0,

η = 1), the exact loss of power formulation from [27] can be
refined as follows to account for the initial state of charge

l(t) = min
0≤u<t

(

max
u≤s<t

(
[D(s, t) − S(s, t) − k(t) + Bd

0 Is=0]+,

D(u, t) − S(u, t) + k(u) − k(t) + Bd
0 Iu=0

)

)

,

(20)

where

k(t) =

{
B t > 0
0 t = 0,

(21)

andIexpr = 1 if expr is true andIexpr = 0, otherwise.
Eq. (20) can be extended to account for a non-ideal storage

system using virtual processesS′, D′, andB′ as described in
Eqs. (15-19). By picking two specific values foru (= t−1 and
= 0) in the minimization in Eq. (20), we have the following
inequality for anyt > 1

l(t) ≤ min
(

[D′(t − 1, t) − S′(t − 1, t)]+,

max
0≤s<t

([D′(s, t) − S′(s, t) − B0]+)
)

, (22)

where in the second term, we use the fact thatk(t)−Bd
0 Is=0 ≥

B0 for any s ≥ 0 and t > 0. Using Eq. (22), we can prove
the corollary as follows:

Pr{l(t) > 0}

≤ Pr

{

min

(

[D′(t) − S′(t)]+,

max
0≤s<t

(

[D′(s, t) − S′(s, t) − B0]+

))

> 0

}

(23)

≤ min

(

Pr {[D′(t) − S′(t)]+ > 0} ,

Pr

{

max
0≤s<t

[D′(s, t) − S′(s, t) − B0]+ > 0

})

(24)

≤ min

(

ε0, Pr

{

max
0≤s<t

(Gd(s, t) − S′(s, t)) > B0

})

(25)

≤ min (ε0, εs (B0)) (26)

= ε∗, (27)

where we use Eq. (22) in the second line. Eq. (24) is an
upper bound on Eq. (23) using the fact thatP (X ∩ Y ) ≤
min(P (X), P (Y )) for any eventsX andY . We use Eq. (18)
to obtain the first term in Eq. (25). To obtain the second terms
in Eq. (25) and Eq. (26), we use the corollary assumption that
Gd(s, t) = D′(s, t) is a dynamic lower envelope onS′ with
bounding functionεs in the sense of Eq. (6). We finally, use
the definition ofε∗ from Eq. (19) to obtain the last line.


