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Abstract—We focus on a region whose power system is con-
trolled by an operator that relies on a regulation service to
balance the total system supply to the total system load in quasi
real-time. We consider the existing contractual framework in
which a regulation unit declares its regulation parameters at
the beginning of the contract, the operator guarantees that the
regulation signals will be within the range of these parameters,
and the regulation unit is rewarded proportionally to what it
declares. Our purpose is twofold. We first want to obtain formulas
for the regulation parameters that a unit with non-ideal storage
should declare to the operator given its state of charge at the
beginning of a contract. Second, we want to analytically quantify,
ahead of time, the reward that such a unit could obtain in
successive contracts by performing this regulation service. Since
the state of charge at the beginning of a contract depends on
what happened in the previous contract and, hence, is a random
variable, we quantify this reward analytically using bounds and
expectation. We then provide engineering insights by applying
our results to three specific energy storage technologies that are
often considered as candidates for regulation. In particular, we
show the impact of the storage parameters and the length of one
contract on the potential reward over a given period.

NOMENCLATURE

EST Energy storage technology
(S)RU (Storage) regulation unit
e Charging efficiency of the storage
η Depth of discharge of the storage
B′, B Capacity of the regulating storage, B = ηB′ (Wh)
∆c,∆d Max charging and discharging power limits (W)
α, γ Charge/discharge time (α = B′

∆c
, γ = B′

∆d
) (hour)

β Discharge to charge ratio (= ∆d

∆c
= α

γ )
D, δ Contract and time-slot (ts) duration
K Set of K time-slots (D = Kδ)
R, r Upward and downward regulation parameters (W)
an, bn Prices for each unit of upward and downward

regulation per unit of time in contract n (Cn)
fn(·) Fixed part of regulation reward in Cn (Dollar)
FT Fixed part of regulation reward over a period of

length T hours (Dollar)
sk Received regulation signal at ts k (W)
Un State of charge (SoC) at the beginning of Cn (Wh)
b(k) SoC of the storage at the end of ts k (Wh)

I. INTRODUCTION

Electrical grid operators have long performed what is
known as “demand-following” which consists of scheduling
generators with different characteristics (e.g., ramp rates) for
supplying electricity to meet real-time demand. More recently,
operators have started incorporating “supply-following” (also
called “demand side management”) techniques to take into
account the introduction of large amounts of renewables into
the grid. In either case, the grid needs to balance demand
and supply at all times using services and providers that

operate at different time-scales. Typically, the operator predicts
the demand a day ahead and schedules some slow-ramping
generators a day in advance. Quasi real-time adjustments are
then made to maintain the balance between demand and supply
and this is done using fast-ramping generators or flexible loads.

In this paper, we focus on the fastest time-scale, which
typically ranges from tens of seconds to a few minutes. More
specifically, we focus on a regulation service which balances
the total system supply to the total system load in quasi real-
time. This service is offered by regulating units (RU), typically
generators (e.g., natural-gas-fired steam turbines, etc.), which
can vary their supply rate in response to signals sent by the
operator from every ten seconds to every few minutes. Because
of the limited regulation capacity, ramping and ramp duration
capabilities of each RU, it may be necessary for the operator
to work concurrently with multiple RUs [1], using advanced
algorithms to distribute the required regulation effort over all
the RUs, while also considering their specific characteristics.

Several operators, including the California Independent Sys-
tem Operator (CAISO), have taken major steps to enable
alternative technologies, such as energy storage technologies
(EST), to be used for providing regulation services. ESTs
that are typically considered for regulation services are fly-
wheels, hydro-power plants, compressed air energy storage,
and batteries [2]. Fast-response and energy recycling are two
of the main characteristics of ESTs that are most often cited
with reference to regulation [3]. While there are benefits to
using storage technologies in regulation services, there are also
specific challenges, such as their limited capacity, charging
and discharging power limits, as well as inefficiency and self-
discharge. Our purpose is twofold. We first want to obtain
formulas for the regulation parameters that a unit with non-
ideal storage should declare to the operator given its state of
charge at the beginning of a contract. Second, we want to
analytically quantify, ahead of time, the reward that such a
unit could obtain in successive contracts by performing this
regulation service.

To better present our contributions, we now describe the
regulation service along with the existing contractual frame-
work assuming a generic regulation unit1. Every D units of
time, a new regulation contract starts. This contract has been
negotiated a few units of time ahead. As a result of this
negotiation, the operator and the RU agree on the regulation
parameters r and R (r,R ∈ R, r < R). The RU commits to
provide any power in the range [r,R] in response to regulation
signals sent by the operator (R and r are in Watts). During
the contract, the operator will send regulation signals sk to the

1We use the term “regulation unit (RU)” to refer to a generic unit and
“storage regulation unit (SRU)” to refer to a unit using a non-ideal storage.



RU in time-slot k ∈ {1, . . . ,K} with D = Kδ (where δ is
the duration of a time-slot) ensuring that:

r ≤ sk ≤ R .

The RU must supply constant power sk during time-slot k if
sk is positive, and draw constant power (−sk) from the grid if
it is negative. Note that in the existing contractual framework,
the operator can generate any sequence of regulation signals,
as long as the inequality above is obeyed. The RU is rewarded
for its flexibility in terms of R and r, and for what it actually
supplies/draws during the contract. There is a penalty to pay
if the RU cannot supply/draw as agreed. The second part of
the reward is not known at the beginning of a contract, so
typically, an RU will select its parameters r and R so as to
maximize the fixed part of the reward, which we call f(R, r),
while keeping the risk of a regulation failure very small or
close to zero2. In the following, when we refer to reward,
we only refer to the fixed part of the reward. In addition, we
assume that the RU declares some parameters r and R at the
beginning of a contract and that the operator accepts these
parameters and hence pays f(R, r) to the RU.

Under this contractual framework, a regulation unit with
non-ideal storage (SRU) would declare its regulation parame-
ters R and r as a function of the size of its storage, of its charg-
ing and discharging power limits and of its efficiency/self-
discharge, as well as, more critically, as a function of its state
of charge (SoC) at the beginning of the contract. Providing
formulas to help the SRU declare its regulation parameters as
a function of the SoC at the beginning of a contract is our first
purpose. Our second purpose is to help the SRU determine,
ahead of time, the storage technology, sizing, and contract
duration that would yield the maximum reward (in terms of
the best and worst-case rewards as well as the average reward)
over longer periods. The SRU does not have direct control of
the contract duration but might try to influence (i.e., negotiate
with) operators and policy makers if the current contract
duration is too unfavorable. Dealing with longer periods, i.e.,
over multiple contracts, is challenging because the SoC at the
end a contract is a random variable (since it depends on the
regulation signals sent during the contract), and consequently,
the initial SoC in the next contract is also a random variable.
Our contributions are:

1) We first focus on a single contract and formulate the
reward maximization problem to compute the regulation
parameters R and r, when considering a non-ideal SRU,
assuming that the initial SoC is known and that we want
to keep the risk of a regulation failure equal to zero. We
derive simple closed formulas.

2) Then, we focus on a sequence of N contracts at the
beginning of the first contract and compute analytical
upper and lower bounds on the reward that could be
obtained out of these N contracts. We also propose an
approximate formula for the expected reward that can be
obtained from N contracts.

2We choose the values of the regulations parameters such that the RU can
always supply and draw, i.e., the RU does not take any risks, and hence does
not pay any penalty.

3) We obtain numerical results for three specific ESTs that
are often considered as candidates for regulation. We
first validate our approximation for the expected reward
over N contracts. We then obtain engineering insights by
comparing the rewards that these three technologies can
bring for different values of some critical parameters.

The rest of the paper is organized as follows: Section II
presents the literature. The system model is introduced in
Section III. Section IV presents our analytical results for
a single contract while Section V present the results for
N successive contracts. Numerical results are presented in
Section VI.

II. LITERATURE BACKGROUND
In conventional regulation services, grid frequency is main-

tained by generators and loads that respond to the regulation
signals sent by the operator. A comprehensive overview of
conventional frequency regulation services is provided in [4].

Practical experiments have shown that ESTs can provide fast
and accurate frequency regulation services [6], [5]. Operational
benefits and costs of using ESTs for frequency regulation are
quantified, via simulation, in [1], [2], [6]. However, challenges
remain that prevent the use of ESTs for the regulation market,
e.g., payment policy [7] and energy storage management [3],
[8].

As explained earlier, SRUs are paid for their flexibility in
terms of their charging/discharging power limits, and what
they actually supply/draw during a contract [7]. To maximize
the fixed part of the reward, typically, SRUs commit to
providing/absorbing energy with their rated power output [1],
[8]. When an energy storage unit provides regulation services
without any control over its maximum charging/discharging
power limits, after a short time, it may deplete its energy
or be fully charged, which results in regulation failures and
revenue losses. In [8], Lu et al. show, via simulation, that
the risk of a regulation failure is not zero when a flywheel
provides regulation services by itself without any control over
its charging/discharging power limits.

Over-dimensioning storage resources is another way to de-
crease the risk of a regulation failure in a contracted regulation
service. In [9], the authors propose a method for dimension-
ing a storage resource to provide frequency regulation. The
proposed method uses historical frequency measurements to
compute the minimum possible capacity.

Extensive work has been done to study how storage could
provide frequency regulation but mostly via simulation. Previ-
ous papers do not compare the performance of different ESTs
in providing regulation services in consecutive contracts. To
our knowledge, our work is the first that computes the optimal
values of an SRU’s flexibility (i.e., R and r) in terms of its
charging/discharging power limits, so that it can respond to all
possible sequences of regulation signals without any failure
such that the fixed part of its reward is maximized and the
first to propose analytical formulas for the expected reward
over consecutive contracts.

III. SYSTEM MODEL

We consider an SRU that has a non-ideal storage of size B′

(Watt-hour), with charging efficiency 0 < e ≤ 1, maximum
charging and discharging power limits ∆c and ∆d (Watt),



respectively, and a depth of discharge (DoD) η (i.e., the
available capacity is B = ηB′). We assume that the storage
power leakage (i.e., self-discharge) is negligible, and that the
discharging efficiency is equal to one. Typically, discharging
power limits are greater than the charging power limits [10],
[11] and hence, in the following, we assume that ∆d ≥ ∆c.

Different storage technologies can be characterized by the
range of values taken by the following parameters: charging
efficiency, charge time, and discharge to charge ratio [10], [11].
The charge time denoted by α is defined as the ratio of the
storage size (i.e., B′) to its maximum charging power limit
(∆c), while the discharge time γ is the ratio of the storage
size (i.e., B′) to its maximum discharging power limit. We
also define the discharge to charge ratio β as the ratio of the
discharging power limit of the storage to its charging power
limit. Note that γ = α

β .
Let us assume that the time is slotted in time-slot (ts) of

size δ, and that the duration of each contract is K time-slots
(i.e., D = Kδ). We assume that the fixed part of the reward in
terms of Rn and rn in each contract Cn is a linear function of
Rn and rn, i.e., f(Rn, |rn|) = (anRn + bn|rn|)D in dollars
where an ≥ 0 and bn ≥ 0 denote the prices for each Watt of
upward and downward regulation per unit of time, respectively.

Let us focus on one contract (we omit the index n). The
SRU commits to provide any power in the range [r,R] (r ≤ 0
and R ≥ 0), in response to the regulation signal sk, that the
operator will send to the SRU at time-slot k (1 ≤ k ≤ K). The
SRU must supply constant power sk during time-slot k if sk
is positive and must draw constant power (−sk) from the grid
if it is negative. During the contract, the SRU will receive a
sequence of regulation signals {s1, · · · , sK}. Let b(k) denote
the SoC of the storage at the end of ts k, it evolves as follows:

b(k) = b(k − 1)− δ[sk]+ + eδ[−sk]+ ∀k ∈ K (1)

where b(0) = U , U is the initial SoC, K = {1, . . . ,K}, and
[x]+ is equal to x if x ≥ 0; otherwise, it is zero.

The SRU needs to make sure when choosing r and R
that the following constraints are satisfied irrespective of the
regulation signals being produced.

0 ≤ b(k) ≤ B ∀k ∈ K (2)
[−sk]+ ≤ ∆c ∀k ∈ K (3)
[sk]+ ≤ ∆d ∀k ∈ K . (4)

Note that the only constraint imposed on the regulation signals
for the existing framework is r ≤ sk ≤ R for all k. This
translates directly into: R ≤ ∆d and |r| ≤ ∆c.

In the following section, we first focus on a single contract
and then on multiple consecutive contracts.

IV. ANALYTICAL RESULTS: SINGLE CONTRACT

Consider a single contract and assume that the SRU knows
its SoC at the beginning of the contract (we call it U ). The
SRU has to choose its parameters R and r so that i) it can
respond to all possible sequences of regulation signals {sk}
without any failure, ii) its reward f(R, |r|) is maximized, and
iii) the SoC at the end of the contract is between 0 and B.

Given a pair (R, r) with 0 ≤ R ≤ ∆d and 0 ≤ (−r) ≤ ∆c,
define the polyhedron F (R, r) as follows3:

F (R, r) =
{
π ∈ RK |π = [s1, . . . , sK ]t, r ≤ sk ≤ R

}
.

The pair (R, r) is feasible (i.e., it can be selected by the SRU
without any risk of a regulation failure) if (2) is satisfied
for all π ∈ F (R, r). Among all feasible pairs (R, r), we
are interested in finding the one that maximizes f(R, |r|) =
(aR+ b|r|)D. Let us consider the two following sequences
of regulation signals:

π1 : sk = r ∀k ∈ K; π2 : sk = R ∀k ∈ K (5)

Proposition 1 establishes that pair (R, r) is feasible if and only
if the value of b(K) obtained by the sequence π1 (resp. π2)
is less than or equal to B (resp. greater than or equal to 0).
We present the following result without proof due to lack of
space.

Proposition 1. Given δ, K, e, and B, pair (R, r) is feasible
for the existing contractual framework if and only if each of
the sequences π1 and π2 yield 0 ≤ b(K) ≤ B.

Clearly sequences π1 and π2 can be seen as worst-case
sequences. Constraint (2) is satisfied for sequence π1 iff

0 ≤ |r| ≤ B − U
eD

. (6)

Similarly, constraint (2) is satisfied for sequence π2 iff

U −B
D

≤ R ≤ U

D
. (7)

Hence, (2) is satisfied for all π ∈ F (R, r) (i.e., (R, r) is
feasible) if and only if (6) and (7) are satisfied. Recall that
0 ≤ R ≤ ∆d and 0 ≤ (−r) ≤ ∆c. Therefore, given B, U , D,
∆d, ∆c, and e, pair (R, r) is feasible if and only if :

0 ≤ R ≤ R(1) , min

(
∆d,

U

D

)
(8)

|r| ≤ r(1) , min

(
∆c,

B − U
De

)
. (9)

Clearly, r(1) and R(1) are the values of r and R that maximize
f(R, |r|) as long as f is increasing in its arguments. Note that
r(1) and R(1) are functions of U , the SoC at the beginning
of the contract. Hence, computing beforehand the reward in a
multiple contract setting is not straightforward since estimating
the SoC at the end of a contract depends on the regulation
signals that will be sent.

V. ANALYTICAL RESULTS: MULTIPLE CONTRACTS

Let us assume that the SRU bids for a set of N consecutive
contracts for a total duration of T = ND time units, and that
Un denotes the SoC at the beginning of contract n, i.e., the
SoC at the end of Cn−1. We assume that U1 is fixed and
known a priori. We want to characterize a priori the reward
FT =

∑N
n=1 fn(Rn, |rn|) that the SRU can expect over the

N contracts. The index n in fn(·) reflects the fact that the
prices for each unit of upward regulation (an) and downward

3The superscript “t” denotes the transpose operation.



regulation (bn) might be different for each contract. Note that
the reward FT is a random variable whose value depends on
the sequences of regulation signals being produced by the
operator. These sequences are unknown a priori and hence
we do not know the SoC at the beginning of Cn for n > 1.
We first characterize the reward by providing upper and lower
bounds and we then compute an approximation of its average.
A. Bounds

To obtain upper and lower bounds on the reward FT =∑N
n=1 fn(Rn, rn) that the SRU can obtain over the N con-

tracts, we first consider a single contract n and assume that
we do not know the SoC Un at the beginning of that contract.
However, we know that Un ∈ [0, B]. Proposition 2 derives
an upper bound fn and a lower bound fn for the reward for
that single contract which are independent of the value of the
initial SoC, i.e., Un.

Typically, the parameters α, β, e and η, are quasi-constant
for a given technology, and hence ∆c and ∆d are quasi-
linearly proportional to the storage capacity. In the following,
we assume that these parameters are constant. To understand
the impact of the available capacity B and the contract
duration D on the lower and upper bounds of the reward, we
present our analytical results in terms of the storage parameters
α, β, B, e, and η. The proof of Proposition 2 is provided in
the appendix.

Proposition 2. Let an ≥ 0 and bn ≥ 0 denote the prices for
each unit of upward and downward regulation in contract n.
Given α, β, e, D, B, and η, the SRU’s reward fn(Rn, rn) is
bounded as follows:

fn ≤ fn(Rn, rn) ≤ fn
where:

1) If D ≥ η α
e

, then

fn = Bmin

{
an,

bn
e

}
, fn = Bmax

{
an,

bn
e

}
.

2) If γη ≤ D < η α
e

, then

fn = BDmin

{
an
D
,
bn
αη

}
, fn = BDmax

{
Wn

αη
,
an
D

}
.

3) If η α
e+β
≤ D < γη, then

fn = D
B

αη
min {anβ, bn}, fn = D

B

αη
max {Qn,Wn}.

4) If D < η α
e+β

, then

fn = D
B

αη
min {anβ, bn}, fn = D

B

αη
(anβ + bn).

where Qn = β
(
an + bn

e

(
γη
D
− 1
))

and Wn =(
bn + an

(
ηα
D
− e
))

.

Given α, β, e, D, and B, the reward FT over the N
contracts (recall that T = ND) is bounded as follows:

N∑
n=1

fn ≤ FT ≤
N∑
n=1

fn

Table I gives the lower and upper bounds over N contracts
given that an = a and bn = b.

Engineering insights based on the bounds: Our analytical
results in Table I show that the upper and lower bounds are
proportional to B while their relationships with D are more
complex. To understand the impact of D, let us consider
the following three storage technologies, namely two battery
technologies (Lithium-ion and Lead-acid) and a flywheel tech-
nology4. The ranges of values for α, β, η, and e for these
technologies are shown in Table II. Typically, for a given
technology, the parameters α and β are quasi constant (i.e.,
they do not change when we change the storage capacity).
Hence, the only free parameter from the standpoint of the SRU
is the storage capacity B = ηB′ but a SRU could influence the
operator to negotiate a contract duration D which is favorable
to its storage technology. Using Tables I and II, we can state
the following (assuming an = a, bn = b and T constant):
• Flywheel: for this technology, ηαe is of the order of a few

minutes (less than five) and since D the contract duration
will most probably be larger than five minutes we are in
Case 1 and so the SRU’s minimum reward during the
period of T hours is inversely proportional to D when
T is constant. Hence, an SRU using a flywheel would
benefit a lot (in terms of reward) from a shorter contract
duration (e.g., 10 minutes).

• Lithium-ion: Depending on the value of D, we will be in
Case 2 or Case 3 and hence it is not always clear that the
SRU would benefit from a smaller contract duration. For
example, if we are in Case 2, a shorter contract duration
will only help as long as a

D < b
ηα .

• Lead-acid: Depending on the value of D, we will be in
Case 3 or Case 4. For example, if D < 40 minutes, then
we are in Case 4 and the minimum and maximum rewards
are independent of D.

B. Average Reward
Another way to characterize the potential reward from the

N contracts is to compute its expected value E{FT }. Let En
denote the expected value of the reward in contract n (i.e.,
En = E{fn(Rn, |rn|)}). Clearly, Rn and rn are a function of
Un, and hence are random variables whose potential values
depend on the past history. The expected reward over the
N contracts is E{FT } = E1 +

∑N
n=2En (the reason we

differentiate between E1 and En, n ≥ 2 is that we know that
U1 while we do not know Un for n ≥ 2). Recall that

E1 = D

(
a1 min

{
∆d,

U1

D

}
+ b1 min

{
∆c,

B − U1

De

})
.

Let gn(·) denote the probability distribution function of Un
over the range [0, B]. We can compute En as follows:

En =

∫ B

0

fn(Rn(x), |rn(x)|) gn(x)dx, n ≥ 2 .

where the notation Rn(x) (resp. rn(x)) means Rn (resp. rn)
given Un = x. Note that given Un = x, we can use (8) and
(9) to compute Rn(x) and rn(x).

Determining the distribution of Un over [0, B] is challenging
and is highly dependent on the distribution of the regulation
signals in contract Cn−1 over the range

[
r(n−1), R(n−1)

]
.

4Note that self-discharge is probably not negligible for Flywheels.



TABLE I
LOWER AND UPPER BOUNDS ON THE REWARD FT WHEN an = a, bn = b,

AND T = ND.
Conditions Lower bound on FT Upper bound on FT
Case 1: D ≥ η α

e
TB
D

min
{
a, b
e

}
TB
D

max
{
a, b
e

}
Case 2: γη ≤ D < η α

e
TBmin

{
a
D
, b
ηα

}
TBmax {W

ηα
, a
D
}

Case 3: η α
(e+β)

≤ D < γη TB
ηα

min {aβ, b} TB
ηα

max {Q,W}
Case 4: D < η α

(e+β)
TB
ηα

min {aβ, b} TB
ηα

(aβ + b)

Q = β
(
a+ b

e

( γη
D
− 1
))

, W =
(
b+ a

(αη
D
− e
))

TABLE II
STORAGE CHARACTERISTICS [10]- [11]

Storage technology Lead-acid Lithium-ion Flywheel

Charging efficiency e 0.75 0.85 0.95
Charge time α 8-16 h 2-4 h 1-3 min

Discharge time γ 48-96 min 24-48 min 1-3 min
Discharge power limit

to charge power limit ratio β 10 5 1

DoD η 0.8 0.8 1

If we assume that the regulation signals in contract n are
uniformly distributed in [rn, Rn], we can show that Un is
distributed according to an Irwin-Hall distribution when the
SRU is using an ideal battery, but it is hard to analytically
determine the probability distribution function of Un for a
non-ideal battery (i.e., when e < 1). Hence, we propose a
method to approximate the average reward E{FT } over the
N contracts. In the following, X̃ represents an approximation
of the real-valued variable X . In a first step, we begin by
assuming that:

Ẽn
D

= an min

{
∆d,

E{Un}
D

}
+ bn min

{
∆c,

B − E{Un}
De

}
(10)

In the second step, we compute an estimate for E{Un}.
We have tried multiple approximations. The first one was to
assume that Un is uniformly distributed between 0 and B. This
worked very well for two of the three storage technologies that
we studied, but not for the third one. The one that provides
the most accurate results for all three technologies involves
approximates E{Un} as Ẽ{Un} = Xn+Yn

2 , where Xn and
Yn are given in Table III. Here Xn and Yn are the minimum
and maximum SoCs at the end of contract n, averaged over all
initial SoCs at the beginning of contract n. The distribution
of the initial SoC is approximated as a uniform distribution
between its minimum and maximum values.

Using this approximate method, we can iteratively compute
Ẽ{Un} for all n. After computing Ẽ{Un} for all n, we
can easily compute Ẽn using (10). Finally, we compute our
approximation of E{FT } which is equal to E1+

∑N
n=2 Ẽn. In

the next subsection, we validate our approximate method, and
provide some engineering insights using numerical results.

VI. NUMERICAL RESULTS: VALIDATION AND
ENGINEERING INSIGHTS

We consider the three storage technologies discussed earlier,
i.e., Lithium-ion, Lead-acid, and Flywheel. Focusing on a
period of ten hours (i.e., T = 10 h), we take K = 60,
U1 = B

2 , an = bn = 1 ($/(h MW)), and α to be equal
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Fig. 1. The expected value of the reward E{FT } (in $) as well as our
approximation of E{FT } as a function of D for B = 20 MWh when
α = 10 h (Lead-acid), α = 3 h (Lithium-ion), α = 2 min (Flywheel),
T = 10 h, K = 60, and an = bn = 1 $/(h MW).

to 10 hours, 3 hours, and 2 minutes for Lead-acid, Lithium-
ion, and Flywheel, respectively. To validate our approxima-
tion on the expected reward over T , we simulate regulation
signals in contract Cn that are uniformly distributed in the
range [rn(Un), Rn(Un)]5. More precisely, given U1 = B

2 , we
compute R1 and r1, and generate K (uniformly distributed in
[r1, R1]) regulation signals for C1. Given U1 and the regulation
signals in C1, we can compute U2, and then r2(U2), and
R2(U2), and hence we can compute the reward in C2. By
doing the same process for C3, · · · , Cn, we can compute the
reward over the N contracts for one realization of regulation
signals. We compute the average reward over 3000 realizations
given D and B. An alternate approach would have been to
obtain the regulation signals {sk} from a dataset, but these
would correspond to specific values of parameters rn and Rn,
different from the optimized values that we derive in this paper.
Thus we would have been limited in our ability to study the
impact of different battery technologies, contract durations and
battery capacities on the average SRU reward.

To validate our approximate method and to understand
the impact of D on the average reward, we compute our
approximation of the average reward as well as the average
reward over 3000 realizations for different values of the
contract duration D and B = 20 MWh. Our numerical results
in Fig. 1 show that:
• Our approximation method works very well.
• E{FT } is non-increasing in D for the 3 technologies.
• For Lead-acid and Lithium-ion, the expected value is not

significantly impacted by the value of D.
• With Flywheel, the contract duration D has a significant

impact on the SRU’s average reward. For D = 10 min,
we saw a gain of 500% (with respect to D = 1 h).

• Flywheel can achieve a higher reward for the same value
of D than Lead-acid and Lithium-ion can. The difference
in E{FT } is minor for D ≥ 50 min and significant for
D ≤ 30 min.

We obtained the same results for different values of B.
To understand the impact of the storage capacity B on

the SRU’s reward E{FT }, we computed the average reward
over 3000 realizations (not represented in the figure because
they are very indistinguishable from the approximations), our

5Clearly, different signal distributions would yield different results



TABLE III
THE HEURISTIC PARAMETERS X(n+1) AND Y(n+1) FOR CONTRACT (n+ 1)

Conditions X(n+1) Y(n+1)

Case 1: D ≥ η α
e

0 B

Case 2: γη ≤ D < η α
e

0
E{Un}+ eD∆c, if Yn ≤ Zc

B − Zc
2

2Yn
, if Yn ≥ Zc

Case 3: η α
(e+β)

≤ D < γη
0, if Yn ≤ Zd
Hn, if Xn ≤ Zd

E{Un} −D∆d, if Xn ≥ Zd

E{Un}+ eD∆c, if Yn ≤ Zc
Gn, if Xn ≤ Zd ≤ Yn
B, if Xn ≥ Zc

Case 4: D < η α
(e+β)

0, if Yn ≤ Zd
Hn, if Xn ≤ Zd ≤ Yn

E{Un} −D∆d, if Xn ≥ Zd

E{Un}+ eD∆c, if Yn ≤ Zc
Gn, if Xn ≤ Zc ≤ Yn
B, if Xn ≥ Zc

Gn = 1
Yn−Xn

[
B(Yn − Zc) + 0.5Zc2 − 0.5Xn2 + eD∆c(Zc −Xn)

]
, Hn =

0.5(Yn−Zd)2
Yn−Xn

, Zd = D∆d, Zc = B − eD∆c
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Fig. 2. The expected value of the reward E{FT } (in $) as well as the lower
and upper bounds on FT , as a function of B for D = 1 h when α = 10 h
(Lead-acid), α = 3 h (Lithium-ion), α = 2 min (Flywheel), T = 10 h,
K = 60, and an = bn = 1 $/(h MW).

approximation of the expected reward E{FT } as well as
the lower and upper bounds on FT , as a function of B for
D = 1 h. Our numerical results in Fig. 2 show that
• The average reward E{FT } is quasi-linear in B for the

three technologies.
• The spread between the minimum and maximum reward

is small for Flywheel, but greater for the other two
technologies.

• Flywheel technology achieves a higher reward for the
same value of B than Lithium-ion can, which, in turn,
does better than Lead-acid.

We have obtained the same results for different values of D.

VII. CONCLUSION

This paper provides tools to quantify offline the reward
a regulation unit with non-ideal storage could expect over
multiple contracts. We show the impact of D the contract
duration on the expected reward and we compare several
storage technologies in terms of the reward they can expect.

APPENDIX: PROOF OF PROPOSITION 2

Given D, e, and B, let us define the linear functions
P (Un) = Un

D and Q(Un) = B−Un
De where Un ∈ [0, B].

The SRU reward for contract n depends on the values of the
parameters ∆c, ∆d, D, e, and B, and on the value of Un in
contract n. We consider the following cases:

Case 0: Since ∆d ≥ ∆c and e ≤ 1, it is impossible to have
∆d <

B
D and e∆c ≥ B

D .
Case 1: Assume that e∆c ≥ B

D and ∆d ≥ B
D . We can

verify that the optimal value of fn(Rn, rn) is determined by
(anP (Un) + bnQ(Un)) ×D irrespective of the value of Un,

and hence the lower and upper bounds of the reward are equal
to
(
Bmin

{
an,

bn
e

})
and

(
Bmax

{
an,

bn
e

})
, respectively.

Case 2: Assume that ∆d ≥ B
D and e∆c <

B
D . Let us define

Zc = (B−∆ceD). Note that we have 0 ≤ Zc ≤ B. Given ∆c,
∆d, D, e, and B, depending on the value of Un in contract
n, the SRU reward for contract n is determined by one of the
following cases:
• If Zc ≤ Un ≤ B, then P (Un) ≤ ∆d , Q(Un) ≤ ∆c, and
fn(Rn, rn) = (anP (Un) + bnQ(Un))×D.

• If 0 ≤ Un ≤ Zc, then P (Un) ≤ ∆d , Q(Un) ≥ ∆c, and
fn(Rn, rn) = (anP (Un) + bn∆c)×D.

Let Wn =
(
bn + an

(
αη
D − e

))
D∆c. The reward in contract

n is bounded as follows:
• If Zc ≤ Un ≤ B, then min {anB,Wn} ≤ fn(Rn, rn) ≤

max {anB,Wn}.
• If 0 ≤ Un ≤ Zc, then bn∆cD ≤ fn(Rn, rn) ≤Wn.

Note that, in this case, we have Wn ≥ bn∆cD.
Proofs for the following cases are omitted due to space

limitations:
• Case 3: ∆d <

B
D , e∆c <

B
D , and Zc ≤ Zd

• Case 4: ∆d <
B
D , e∆c <

B
D , and Zc > Zd.
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