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Abstract. In this paper we study the impact of statistical multiplexing
on leaky-bucket regulated traffic streams as they pass through the net-
work. In particular we show that the burstiness of a flow is randomized
as it transits through the nodes with mean equal to its initial burstiness
value at the ingress. We then show that the random burstiness for a sin-
gle flow converges to a constant equal to the initial value at the ingress
when the flow is multiplexed with a large number of sources. The re-
sults do not depend on independence or homogeniety between flows. We
conclude by providing some simulation results that confirm the theory.

1 Introduction

Within the past decade, there has been a lot of work on characterizing the be-
havior of traffic in large networks (see [1–5, 16] and the references therein). In
particular, it is well known that Internet traffic is bursty although there is not
a rigid definition for burstiness. To manage the traffic in networks, a convenient
approach is to shape traffic offered by users according to the parameters of an
envelope at the network access point. One of the simplest regulation mechanisms
is the so-called leaky bucket mechanism, which has been studied in great depth
in the context of providing guaranteed quality of service. Traffic offered by a user
is in general regulated by a dual leaky bucket, one leaky bucket enforcing the
peak rate π and another the mean rate ρ by using a bucket size σ. This regulator
is referred to as a (σ, ρ, π) regulator and a formalism to study worst-case delay
bounds called network calculus has been developed for leaky bucket regulated in-
puts. Network calculus (see for instance [4–9]) provides a framework to compute
end-to-end delays based on algebraic properties of the (min,+) algebra.

Network calculus is essentially a deterministic worst-case approach. This
analysis yields conservative results for network resources provisioning because
it neglects the statistical properties of traffic flows as well as their possible sta-
tistical independence. Moreover, the statistics of flows are altered as they interact
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with other flows through the scheduling and multiplexing mechanisms in routers.
Thus, even though we might precisely regulate flows at the ingress, the internal
behavior is more difficult to characterize. In this paper, from the viewpoint of
computing statistical performance metrics, such as the mean delay through a
network and overflow probability at an internal node, we aim to characterize the
statistical properties of regulated flows as they progress through the network. In
particular, this paper focuses on how statistical multiplexing alters the behavior
of single regulated flows. We investigate how the parameters used at the network
access point are modified when the single stream traverses several multiplexing
nodes, such that performance characteristics at each node can be computed.
This leads us to characterize the traffic parameters of flows at the output of a
multiplexing stage. Insights from the single flow case will also help subsequent
study on the behavior of aggregated flow when a portion of the output flow from
a queue goes to the same node.

Recently, there has been a lot of interest in analyzing the statistical properties
of multiplexed regulated streams. In [16] it is shown that when a large number
of homogeneous sources are multiplexed, a single output flow of a switch essen-
tially keeps its initial statistical characteristics from a large deviations point of
view. The authors in [17] provide a network decomposition framework based on
the same idea. In [10], the authors consider many independently multiplexed
regulated streams as one flow and obtain an effective burst parameter for the
aggregated input in terms of a given overflow probability. In [7, 13] the authors
obtain bounds for the tail distribution of the buffer occupancy but do not di-
rectly address the burstiness characterization; and the analysis is restricted to
one queue. Authors in [14] and [15] define a notion of exponentially bounded
burstiness (EBB) which yields bounds on the tail distributions of the buffer
occupancies. This EBB notion is mainly studied for multiplexing a few flows.
In [11, 12], the authors obtained tight bounds on the mean delay and overflow
probabilities for multiplexed regulated streams using an extremal traffic charac-
terization but in single queues. None of these earlier results provide insights on
how the statistical nature of the burstiness of a data flow behaves as it passes
through multiple nodes and is multiplexed with many other flows in each node.

In fact, when a flow passes through several multiplexing nodes, the burstiness
parameter is altered at each node and can no more be described by a constant
parameter. This leads us to introduce the concept of a stochastic burst size which
manages to characterize the burstiness of each sample path of the traffic flow.
Using the idea of stochastic burstiness, we study the alteration of the traffic
characteristics of a single flow as it passes through several multiplexing nodes.

In particular, we derive the moments of the burstiness parameter and pro-
vide some information on its distribution. We show the mean of the burstiness
parameter for a single source remains a constant equal to the initial value of
the burst size. The distribution spreads as the number of multiplexing nodes
increases, but this distribution converges to its mean if the contribution of this
flow is negligibly small at each node. Our results hold for heterogeneous network
and does not require independence between flows.



3

The efficacy of this main result is then studied by simulating the mean de-
lay and overflow probability in a tandem queue scenario. Theoretical results are
validated via simulations. It turns out that when the number of sources in the
network is large and the contribution of individual sources is small, then taking
the burst size as unchanged is a reasonable approximation as in the large devia-
tions setting considered in [16]. Therefore it can be used to facilitate the designs
of shapers as well as admission control schemes for IntServ/DiffServ networks.

The outline of the paper is as follows: Section 2 gives a general definition of
the stochastic burstiness. Section 3 studies in detail the burst size model σ̃(s, t)
for single flows. Statistical properties of this model are given. In section 4, we
show the effectiveness of our burstiness model via numerical results. Finally,
section 5 concludes the paper.

2 Problem Formulation

In this paper, all the traffic processes are defined on some filtered probability
space (Ω,F , P, {Ft}) and are leaky-bucket regulated at the access point of the
network. We say an input flow I(t) is leaky-bucket regulated, if ∀s ≤ t ∈ R+,

I(s, t) ≤ min{π(t − s), σ + ρ(t − s)}, (1)

where π stands for peak rate, ρ for mean rate and burst size is denoted by σ.
Equation (1) actually defines a worst case envelope for a regulated flow. If we

let I(w, (s, t)) denote the amount of data produced by one sample path ω ∈ Ω
of flow I(t) in the time period of [s, t], (1) then indicates that for all the sample
paths in Ω and for any time period [s, t], I(ω, (s, t)) is confined by a deterministic
linear sub-additive function. Therefore, when the burstiness of a traffic flow is
measured by the burst size σ, this definition implies that the burstiness of this
flow is the maximum value achieved over all possible sample paths of flow I(t)
and all time interval [s, t], i.e.,

σ = max
s≤t, ω∈Ω

{I(ω, (s, t)) − ρ(t − s)}. (2)

We believe this is the fundamental reason why the performance bounds given by
the deterministic network calculus approach are conservative for dimensioning
the network with statistical performance metrics. Furthermore, the stochastic
properties of a flow may change after multiplexing inside the network; while this
deterministic approach fails to characterize the multiplexing effect.

To emphasize the stochastic properties of I(t), in particular, of its burstiness
inside the network, we relax the above worst case condition and consider each
sample path of I(t) in each time interval [s, t]. We define our stochastic burstiness
of a regulated flow by

σr(ω, (s, t)) = (I(ω, (s, t)) − ρ(t − s), 0)+. (3)

This original stochastic burst model keeps track of each sample path of traffic
flow I(t); hence it dynamically inherits the stochastic information of I(t) as the
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flow passes through a network of queues. Meanwhile, it satisfies the fundamental
burstiness property that for each sample path, σr confines the maximum time
period during which a regulated flow can produce data at its peak rate ([4]). It is
easy to see that the peak rate of an output flow is bounded by the capacity of the
node and the average rate of the flow is unchanged in a stable network. Hence
to compute the performance, it is necessary to characterize the probabilistic
properties of this stochastic process σr(s, t).

In this paper, we study the burstiness characterization of a single output flow
Ĩi(t) which is the ith output stream from a previous node with traffic descriptor
denoted by (σ̃i, ρ̃i, π̃i). We aim to understand how the burstiness parameter σ̃i

is changed from that of the ith input stream after statistical multiplexing in
the queues of previous nodes, such that the single output traffic flow can be
stochastically regulated as

Ĩ(s, t) ≤ min{π̃(t − s), σ̃(s, t) + ρ̃(t − s)}.

We focus on the burst level phenomena that occurs in a time scale typical of
an on-off source activity period rather than the inter-arrival periods of packets,
we thus ignore the discrete nature of the packets arrivals and regard the input
flows as continuous stationary fluid processes. We restrict our analysis to a stable
network in which all the nodes have infinite buffer with work conserving FIFO
scheduling and each flow is assigned a route without loop. Traffic flows are called
“fresh” if they are regulated with fixed parameters (σj , ρj , πj). Such flows are
usually inputs to the edge nodes of the network. Their burst sizes are known at
the edge node via subscription or a signaling procedure. Note that independence
between flows are not assumed in our analysis.

3 Burstiness of a Single Flow

In this section, we tag one specific flow, I i(t), at the entrance and characterize
its burstiness behavior after it passes through several internal nodes.

3.1 Single Output Flow with Fresh Inputs

Q 1 1
Q 2

C2
C

PSfrag replacements {Ij
1(t)}

Ii
1(t)

eIi
2(t)

Fig. 1. Scenario S-I

We will begin our discussion with the simplest case as shown in Fig. 1. In
this scenario, N1 number of fresh flows {Ij

1(t)}N1

j=1 enters Q1 where flow j has
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parameters (σj
1, ρ

j
1, π

j
1). We are interested in the burstiness process σ̃i

2(s, t) of

the ith output flow Ĩi
2(t).

To relate the output flow Ĩi
2 with its input I i

1(t), we use the definition of
Virtual Arrival Time Process (VATP) vi

1(t) ([9, 20]) of fresh input I i
1(t) as the

following:
vi
1(t) = sup

s≤t

{s : Ii
1(s) ≤ Ĩi

2(t)}. (4)

Hence vi
1(t) denotes the arrival time of a bit from source i to the queue which

departs at time t. Since we deal with FIFO queueing, vi
1(t) can equivalently be

defined as:

vi
1(t) = sup

s≤t

{
s : s +

Q1(s)

C1
≤ t

}
. (5)

where Q1(s) is the stationary workload of the first queue.
It readily follows that vi

1(t) is a nondecreasing right-continuous process and

that Ĩi
2(s, t) = Ii

1(v
i
1(s), v

i
1(t)). Then with vi

1(t) = t−
Q1(v

i

1
(t))

C1

, and the fact that

Ii
1(s, t) is regulated as

Ii
1(s, t) ≤ min{πi

1(t − s), σi
1 + ρi

1(t − s)},

we obtain

Ĩi
2(s, t)≤min{C1(t − s), σi

1 + ρi
1(v

i
1(t) − vi

1(s))}

= min{C1(t − s), ρi
1(t − s) + σi

1 +
ρi
1

C1
[Q1(v

i
1(s)) − Q1(v

i
1(t))]}.

Here, we used the fact that the peak rate for the output flow is confined by
the capacity C1 of the first queue, π̃i

2 = C1. Hence Ĩi
2(s, t) is also regulated, and

its burstiness parameter can be characterized as a stochastic process {σ̃i
2(s, t)}

defined by

σ̃i
2(s, t) = σi

1 +
ρi
1

C1
[Q1(v

i
1(s)) − Q1(v

i
1(t))]. (6)

As seen from (6), the stochastic properties of σ̃i
2(s, t) are determined by

another random process Q1(v
i
1(t)) which is a random-time shifting of stationary

workload process Q1(t) of the first queue. The following lemma shows that, with
FIFO queueing, this process Q1(v

i
1(t)) is also a stationary process and it has the

same moment distributions as Q1(t).

Lemma 1. Consider several input streams {Ij(s, t)} entering a FIFO queue
with capacity C, with ρj = E[Ij(0, 1)] and

∑
ρj < C. Let Q∗(t) = Q(vi(t)),

where vi(t) is the Virtual Arrival Time Process. Then Q∗(t) is a stationary
process and for n ≥ 1, E[(Q∗)n(t)] = E[Qn].

Proof. The proof follows mutatis mutandis from [20, Theorem 4].

Therefore, we can obtain the following statistical properties of σi
2(s, t):
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Proposition 1 (Properties of σ̃i
2(s, t)). For any sample path, Ĩi

2(s, t) is reg-
ulated with (σ̃i

2(s, t), ρ1, C1):

Ĩi
2(s, t) ≤ min{C1(t − s), ρi

1(t − s) + σ̃i
2(s, t)}. (7)

The mean value of σ̃i
2(s, t) is given by

E[σ̃i
2(s, t)] = σi

1, (8)

and its second moment is upper bounded.
Finally, we have σ̃i

2(s, t) → σi
1 in probability as ρi

C1

→ 0.

Proof. Equation (7) is obtained from equation (6). From the same equation and
Lemma 1,

E[σ̃i
2(s, t)] = E[σi

1 +
ρi
1

C1
[Q∗

1(s) − Q∗
1(t)]] = σi

1,

and equation (8) follows. Also, its second moment is bounded since

E[(σ̃i
2(s, t))

2] = (σi
1)

2 + 2
(ρi

1)
2

C2
1

E[Q2
1] − 2

ρi
1

C1
E[Q∗

1(t)Q
∗
1(s)]

≤ (σi
1)

2 + 2
(ρi

1)
2

C2
1

E[Q2
1].

Finally, the convergence follows follows from Markov Inequality,

P{|σ̃i
2(s, t) − σi

1| ≥ x} = P

{
|Q∗

1(s) − Q∗
1(t)| ≥

C1x

ρi
1

}
≤

2ρi
1E[Q1]

C1x
.

Since E[Q1] is upper bounded, ∀x > 0, the the left hand side of above equation
goes to 0 as ρi/C1 goes to 0. This completes the proof.

3.2 Single Output Flow to the (k + 1)th Node

Q 1
CK+1Q

K+1C1

PSfrag replacements
{Ij

1(t)}

Ii
1(t)

eIi
k+1(t)

Fig. 2. Scenario S-II

We now come to generalize the observations on the burstiness of a single
flow. Consider the case described by Fig. 2 where the tagged ith input flow Ii(t)

traverses k nodes and gives rise to Ĩi
k+1(t) for node k + 1.We will use similar

approaches as in Section 3.1 to characterize burst size σ̃i
k+1 of Ĩi

k+1(t).
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As before, the Virtual Arrival Time Process vi
k(t) for the ith stream Ĩi

k(t) at
the kth queue is defined as:

vi
k(t) = sup

s≤t

{s : Ĩi
k(s) ≤ Ĩi

k+1(t)} = sup
s≤t

{
s : s +

Qk(s)

Ck

≤ t

}
.

and process vi
k(t) is non-decreasing and right-continuous.

Using the concept of VATP together with the fact that I i
1(s, t) is regulated, we

can obtain Proposition 2. This proposition shows that we can define an envelope
process for Ĩi

k+1(s, t) being stochastically regulated with a burstiness process
σ̃i

k+1(s, t). Proposition 2 can be proved by mathematical induction. Details of
the proof is given in [21] due to limited space.

Proposition 2. Consider an input stream which is characterized by the param-
eters (σi

1, ρ
i
1, π

i
1) at the first queue. Then its output from the kth queue is stochas-

tically enveloped as:

Ĩi
k+1(s, t) ≤ min{Ck(t − s), ρi

1(t − s) + σ̃i
k+1(s, t)},

and the burst size process σ̃i
k+1(s, t) for Ĩi

k+1(s, t) is defined by

σ̃i
k+1(s, t) = σi

1 +

k∑

m=1

ρi
1

Cm

[Qm(fk
m(s)) − Qm(fk

m(t))]. (9)

where

fk
m(t) = vi

m ◦ vi
m+1 ◦ · · · ◦ vi

k(t). (10)

It is worth noting that fk
m(t) for the mth queue is a non-decreasing right-

continuous process. Moreover, using the knowledge of palm theory [22] as well as
mathematical induction techniques, the following lemma shows that the random-
time shifting process Q(fk

m(t)) is also a stationary process. Details of the proof
is given in [21] due to limited space.

Lemma 2. If the workload process {Qm(t)} in a work conserving node is a
stationary process, for m = 1, · · · , k, then Q∗k

m (t) = Q(fk
m(t)) is bounded and

{Q∗k
m (t)} is a stationary process.

We then obtain the properties of the burstiness of Ĩi
k+1(s, t) as the following:

Proposition 3. (Properties of σ̃i
k+1(s, t))

The mean value of σ̃i
k+1(s, t) is given by

E[σ̃i
k+1(s, t)] = σi

1. (11)

We also have σ̃i
k+1(s, t) converges to σi

1 in probability as ρi
1/Cm → 0 for m =

1, · · · , k.
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Proof. From the stationarity of Q∗k
j (t), we have E[Q∗k

j (t)] = E[Q∗k
j (s)] for j =

1, 2, · · · , k, from which equation (11) follows. To show the convergence, from
equation (9) and Markov Inequality, we have

P{|σ̃i
k+1(s, t) − σi

1| > x} ≤
2ρi

1

x

k∑

m=1

E[Q∗k
m ]

Cm

.

Therefore, σ̃i
k+1(s, t) converges to σi

1 in probability as ρi
1/Cm → 0 for m =

1, · · · , k, since E[Q∗k
m (t)] is bounded and k is a finite number. This completes

the proof.

At the end of this section, we summarize our main result into Theorem 1 for
the burstiness behavior of a single flow in acyclic stable networks.

Theorem 1. In a stable network with work conserving FIFO scheduling at every
node with infinite buffer, if all the input flows at the entrance are regulated with
leaky-bucket parameters (σj , ρj , πj), then each flow to node k inside the network
is still regulated, with a stochastic burst size σ̃j

k(s, t). This burst size has the mean
value of σj and converges exponentially fast to this constant σj in probability,
as ρj/Cm → 0 for m = 1, · · · , k − 1.

Remark 1. This result implies that in a large network, no matter how the flow
is multiplexed with others at each node, as long as the average arrival rate of
the flow is much smaller than the capacity of the server, its burst size is almost
constant. Indeed, it can be a very good approximation when the network carries
a large number of flows, as for instance a core network. Furthermore,in our
analysis, we consider a heterogeneous network and do not assume independence
between input flows. Thus our main result is a general characterization of single
regulated flows inside the network.

4 Performance Discussion

We have theoretically shown the convergence of the burstiness of a single flow
in Section 3. However, this result is presented in a limit sense: the convergence
holds as ρi/Ck goes to 0 for each node on an end-to-end path of stream Ii(t). In
real network systems, we need to know the scale of the network for the burstiness
converges at a reasonable rate as well as how the distribution of its burstiness
deviates from its constant mean as the number of end-to-end hops increases.
Furthermore, it is more interesting to measure the distortion of performances,
such as mean delay and overflow probability, at an internal node along the end-
to-end path due to the burstiness behavior of a single flow.

To answer these concerns, in this section, we will simulate the mean delay and
overflow probability in a tandem queue scenario as shown in Fig. 2. In particular,
we will illustrate how the values of these performance metrics change when the
number of input flows increases at each stage and when the number of end-to-
end hops increases. These simulation results reflect the convergence behavior of
the burstiness of each flow.
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Table 1. Simulation Parameters

N1 Nf

k Ck σk ρk πk

50 49 1 0.1 0.7/N1 1

200 199 1 0.1 0.7/N1 1

400 399 1 0.1 0.7/N1 1

Table 2. Performance Upper bounds with Regulated Inputs

N1 EDINFO PChernoff PMD1

50 0.11433 0.005528 0.013881

200 0.11608 0.012163 0.013881

400 0.11638 0.014004 0.013881

All simulations are carried out on a time-driven fluid simulator. This simu-
lator consists of a number of FIFO queues with infinite buffer size and indepen-
dent regulated On-Off fresh input streams of chosen parameters. We designed
the flows to be homogeneous at each node for simplicity. And we generated in-
dependent fresh flows so as to compute the theoretical bounds of the mean delay
and overflow probability at each node with available results in the literature
([11, 12]). Note that this independence is required only by computation of the
performance metrics. Our results on the burstiness behavior of flows inside the
network do not assume independence between flows.

In our numerical simulations, a tandem queue scenario with 10 hops is stud-
ied. Parameters about the fresh input flows and the servers are given in Table
1. At each node, we fixed the total load to be 0.7 as the number of sources in-
creases. Therefore, the convergence speed of the burstiness of the ith flow can be
measured by the total number of input flows Nk to each node. Furthermore, we
set the number of fresh inputs N f

k , for k = 2, · · · , 10 to be equal to N1−1. In this
way, input scenarios at the latter 9 nodes are equivalent to replacing one fresh
input to node 1 with a regulated flow having stochastic burstiness behavior. We
thus can easily observe the evolution of the burstiness behavior of a single flow
by comparing values of performance metrics at different nodes.

Numerical results on mean delay at each node are given in Figure 3(a); and
those on overflow probability are illustrated in Fig. 3(b). These data are re-
ported for a 95% confidence interval. We omit plotting those intervals in the
figures because they are too small to be shown compared to the statitical sam-
ple mean. If we let mk denote the value of a performance metric at node k, and
the performance distortion be measured by (mk −m1)/m1×100%, then, as seen
from these two figures, when there are more than 200 flows entering each node,
performance distortions at each node are negligibly small: around 1% for mean
delay and 5% for overflow probability. At the same time, increasing the number
of hops of an end-to-end path does not distort the performance at each node dra-
matically. Indeed, each node along the same path provides similar average delay
and overflow probability for arrival flows. All these observations imply that the
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Fig. 3. Simulation Results

stochastic burstiness of a single flow converges to its constant mean value at an
acceptable speed. In practical applications, we can approximate the stochastic
burstiness of a flow inside the network with its mean value, which is the burst
size originally obtained at the entrance of the network. Hence, we can obtain the
parameters of single flows inside the network and compute the performance of
each internal node via single-queue analysis techniques.

At the end of this section, we list in Table 2 the upper bounds of mean
delay and overflow probability computed by replacing the stochastic burstiness
with its constant mean value. EDINFO is computed from equation (31) in [11];
PChernoff and PMD1 are computed from Chernoff bound and M/G/1 queue
bound respectively, which are discussed in detail in [12]. It is clear to see that
these theoretical upper bounds are still tight to confine the performances of a
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node inside the network, when the inputs to the node are independent of each
other as in our scenario.

5 Conclusion

In this paper, we have characterized the burstiness behavior of single traffic flows
as they pass through the network. These traffic processes are initially leaky-
bucket regulated at the entrance of the network. By considering the internal
input traffic as the output flows of some previous queue, we exploit the mul-
tiplexing effects from the many sources at the previous node. In particular we
have shown that when single flows are small, the multiplexing does not affect
their initial burstiness.

This inheritance of burst-size descriptor achieves scalability in designing
shapers at the routers of Differentiated Services networks. Shaping algorithm
(Leaky-Bucket Algorithm) can be employed only at the edge of the network for
each class of flows while core routers can regard each arrival flow keeping its
original burst descriptor and do not have to reshape the traffic.

We have also illustrated that statistical performance upper bounds for deter-
ministically regulated flows can be used to estimate the performance of an inter-
nal node in scenarios where input flows are independent of each other. Authors
in [19] studied by extensive simulation the inter-source cross-correlation under
more general settings. They observed that the inter-source dependence benefits
queueing performance and independence assumptions between flows can give
conservative estimation. Deeper understandings on the dependence between in-
ternal flows are indispensable before the establishment of a general methodology
for obtaining statistical end-to-end performance estimates.
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