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Abstract. We examine the fair allocation of capacity to a large popu-
lation of best-effort connections in a typical multiple access communica-
tion system supporting some bandwidth on demand processes. Because
of stringent limitations on the signalling overhead and time available to
transmit and process information, it is not possible to solve the allocation
globally to obtain the optimally fair allocation vector. A two-level pro-
cedure is proposed where connections are aggregated within terminals,
which send aggregated requests to the controller. The controller then
computes the appropriate aggregated allocation per terminal and sends
the corresponding allocation vector back to the terminals. Each termi-
nal then computes the allocation vector for its connections. We want to
study what aggregated information the terminals should send and what
allocation problem should the controller and the terminals solve to pro-
duce a near-optimal (in terms of fairness) allocation vector. We propose
a primal-based decomposition approach, examine in detail a number of
approximations and show that by transmitting its total demand and
number of connections, each terminal can achieve a near-optimal and
near-fair allocation of capacity.

1 Introduction

The fair allocation of capacity among best-effort users is a subject that is gaining
wide interest both in wire-line networks, such as ABR services in ATM [1, 2], non-
QoS constrained services in IP networks [3] and in wireless and wireline access
and satellite systems. In this paper, we focus on systems with multiple access
links for which a process is needed to share the available capacity on a demand
basis. All these systems are characterized by a set of users, each submitting
a request for bandwidth, the sum of which usually exceeds the available total
bandwidth. The required bandwidths are not absolutely needed and the users
are willing to live with an allocation smaller than what they requested. The

* This work was performed while the two last authors were at Nortel Networks, Harlow,
UK.
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problem is then to allocate the total available bandwidth in an optimally fair
manner. In all that follows, the measure of optimality always refer to the fairness
of the allocation process unless otherwise noted.

Although the fair allocation problem is relatively simple to solve to optimal-
ity, in practice, there are a number of situations where the actual computation
turns out to be difficult. Consider for instance the case of a large population
of best-effort connections on a satellite system having typically many thousand
terminals, each with potentially several connections. Because the bandwidth of
the multiple access uplink is very limited, there is a need to limit the signalling
overhead, i.e., the amount of information sent to request bandwidth. Also, the
bandwidth allocation process is performed periodically every few tens of milli-
seconds for geo-stationary satellite systems and the allocation process should be
able to run within this time limit. One of the main issues is that the problem
of sharing fairly a given capacity among a large number of un-coordinated users
competing for this capacity is very time consuming and there will be a scalabil-
ity issue if we want to design a fast, low-overhead and optimally fair allocation
process.

These systems, however, have a hierarchical structure where a terminal will
manage a number of connections. These terminals will have some processing
power and are only able both to request bandwidth from the controller and to
reallocate this bandwidth among their connections. With a structure like this,
each terminal receiving (or computing) the requests from its own connections
could transmit to the controller some aggregated information based on the indi-
vidual requests. In such a system, two questions naturally come to mind and form
the subject of this paper: 1) How should the individual call requests be aggre-
gated by the terminals, i.e., what aggregated information should each terminal
send on behalf of its connections? and 2) how good are these approximations
with respect to the optimal allocation?

The main findings of this work is that if each terminal sends only the sum
of the requests of each of its connections, the controller cannot allocate the
available capacity in a near optimal fashion. We can get a much better solution
if each terminal sends both the sum of the requests of each of its connections
and the number of connections. Based on these requests, the controller can solve
an optimization problem of lower complexity (as opposed to the one it would
have to solve if each connection had sent its own request) and thus is able to
perform the computation within the allowed time. We show that this process
yields results very close to the optimal solution.

The paper is structured as follows. First, we state the model and propose a
primal decomposition of the optimal allocation. We solve the sub-problems and
state the master problem. Then, we investigate two types of approximations.
The first set uses only the sum of the individual requests for each terminal while
in the second set, each terminal is allowed to send an aggregated request made
up of two terms, one of which being the above sum. Numerical results then
show that sending the number of connections as the second term yields a nearly
optimal solution and that this is probably the best trade-off that can be done
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in terms of efficiency and signalling overhead. Conclusions and future extensions
to the work follow.

2 Optimal Allocation Model

We want to compute the optimally fair allocation vector x by solving the problem

max Z = Hxl (1)
i=1
i=1
0<mz; <d; (3)

where n is the total number of connections, C' is the total available capacity,
x; is the allocation to connection ¢ and d; is the request made by connection
i. Note that there may be more constraints on the terminals but that would
not fundamentally impact the results of this study. The problem is interesting
when Z?:l d; > C' that is, when it is not possible to meet all the requests. In a
satellite system, n will be of the order of several thousands and the problem has
to be solved once every few tens of milli-seconds. At each period, the available
capacity C will change due to the arrivals and releases of calls that are not
best-effort (i.e., that are allocated some resource on a reservation or static basis)
so that we do not expect the problems to be very similar from one period to
the next. Hence proposals based on explicit knowledge of the demand for each
connection in the system are not realistic in terms of signalling overhead as well
as processing time and power.

3 A Primal Decomposition Method

The basic idea for reducing the complexity of the computation is to use a two-
level allocation procedure. At the terminal level, the controller partitions the
total capacity C' among the terminals according to some rule, yielding an allo-
cation C; to terminal . Once this allocation is made, each terminal allocates its
C; among its connections.

An important advantage of a primal decomposition method is that the solu-
tions are always feasible with respect to the total capacity constraint (2). This
is in sharp distinction with dual methods where this constraint is not met unless
the multiplier has been exactly calculated. In the present case, because there is
little time for iterations, it is expected that dual methods would not have time
to converge and thus could yield poor solutions and this is why we concentrate
on primal techniques.
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3.1 The Primal Decomposition Model

We now give a precise definition of the primal decomposition model for prob-
lem (1-3). Suppose that we have allocated a capacity C; to terminal ¢ by some
yet unspecified method. Once this allocation has been made, assume also that for
each terminal i, we allocate C; optimally among the n; connections of this ter-
minal. Let d; ; and z; ;(C;) be the demand and the optimal capacity allocated
to connection j of terminal ¢ and define the value of the terminal i objective
function as

j=1

We write P;(C;) and z; ;(C;) because once the terminal allocation C; is known,
the allocation to the connections and the value of the objective function are
completely defined. The optimal allocation problem can then be written as

rcrg)é P 4 P;(C;) subject to ZCZ <Cand C; <D, (4)
=1 i=1

where m is the total number of terminals and D; = Zj d; ; is the sum of the

requests for all the connection in terminal i. Each of the P;(C;) is computed

solving the following optimal allocation for terminal ¢

g Uz

rrglgfjux P(C;) = jl;[lxj subject to ;mj <Cjand 0<z; <d; (5)
where n; is the number of connections of terminal ¢ and vector z; is the allocation
vector for terminal ¢ where we have dropped the terminal index 4 for simplicity.
Note that problem (4) is entirely equivalent to problem (1-3) under the condition
that the P;(C;)s are calculated by solving (5).

3.2 Solving the Sub-Problems

We examine the structure of the sub-problem (5) and propose a fast solution
technique. Note that this problem has exactly the same structure as the original
problem (1-3) but is of much smaller size since it deals only with the connections
of a particular terminal 4.

It is obvious that the objective function of (5) is monotone increasing in ;.
The maximum will most likely be on one of the vertices of the domain and the
first order optimality conditions are not very useful for computing a solution.
The hard part is rather to determine on which vertex lies the optimal solution.

Assume that for a given value of C;, we have chosen a set J;(C;) of constraints
of the form z; < d; to be saturated and let k;(C;) be the number of such
constraints. The optimal solution of the sub-problem for the given value C; then

becomes
TiY < d; otherwise.
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The choice of J;(C;) is of course subject to the condition Ej z; < C;. If this
condition is not met, we must choose another set of saturated constraints. We
must then compute the values of the x;, j & J;(C;). We rewrite the problem (5)
for this particular choice of saturated constraints

P(J;) = max H z; subject to Z z; =C;
3¢ Ji(Ci) JEJi(Cy)

where C; = C; — Y jedi(Ch) d; is the residual capacity not allocated to the satu-
rated constraints and we write P(J;) to indicate that the value of the objective
depends on the choice of the saturated constraints. Note also that since all the
saturated constraints are in J, there are no bounds on the remaining variables.
We can then use the first order optimality conditions to compute these variables
and we find the optimal solution

Tj = i .

—————  otherwise,

n; — ki(Cs)
in other words, the residual capacity is allocated equally among the unsaturated
connections. An implicit condition is that this allocation does not exceed the
bounds dj,j ¢ J;(C;). If this is not the case, then the choice of J;(C;) has to
be modified. The optimal value of the objective function of the sub-problem can
then be written

ni—ki(C;
L (€
JEJi(Cy)

The problem then reduces to choosing the set J; that will give the largest value
for P(J;). We can prove the following theorem (the proof is omitted because of
lack of place):

Theorem 1. The optimal solution of the sub-problem, for a given value of C;, is
obtained by saturating the largest possible number of constraints with the smallest
possible values for the d;s.

Once we have made this choice, the residual capacity is spread equally among
the unsaturated connections.

We can propose a very simple algorithm for this particular allocation. Imagine
that C is increasing from 0. As long as the smallest value of the d;s is not reached,
we allocate C' equally to all connections. When the smallest bound is reached,
the corresponding value of z; is set at this bound and we keep allocating the
remaining capacity among the still unsaturated connections. This goes on until
C has reached its real value.
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3.3 Solving the Terminal Allocation Problem

Given the structure of the sub-problems and their optimal solutions, we now turn
to the solution of the terminal allocation problem (4). From now on, we assume
that the d;s are numbered by increasing value. The controller can calculate an
optimal solution if it knows the value of the functions P;(C;) for all terminals
and any value C;, which means that the computation and transmission times
will be large. We now describe the form of these functions.

Using the logarithmic form of the problem, we write eq. (6) as

log Pi(Ci) = > logd; + [n; — ki(Ci)] {log C; — log[n; — k:(Ci)]} -
JEJi(Ci)

We know that k;(C;) is a monotone increasing function of C;. Assume that
C; = 0. In that case, no constraint can be saturated and we have J;(C;) = 0,

k:(C;) = 0 and N
P(Ci) = (2) y (7)

ng

In other words, near 0, log P;(C;) is linear in log C; with a positive slope n;. This
situation remains as long as C; is not large enough to allocate a capacity of d; to
all connections, that is, as long as C; < n;d;. At that point, the first constraint
x1 < dy becomes saturated. If we keep increasing C;, we get log P; = log d1+(n;—
1) [log(C; — d1) — log(n; — 1)] and this as long as n;d; < C; < dy + (n; — 1)da.
In that range, log P; is a linear function of log(C; — d;) with a positive slope of
n; — 1.When C; — 0o, we can allocate the full demands to all connections and
we have

log Pl(C’Z ~ OO) = Z]Og dj
J

and this is independent of C; so that we call this the uniform approximation.
We can write the general form for log P;(C;) if we first consider the points
0, ngdy, dy + (ng — )da, ..., 0 dy + (ni — k)dg ... 31, di on the C; axis.
These points define a set of intervals Zy, k = 0...n; — 1 where the function takes
a different form in each interval. More precisely, we have, for k = 0...n; — 1,
when C; € Zy,

log P,(C;) = Xk: logd; + (n; — k) [log (c,» - Xk: dj) ~log(n; — k)} (8)

j=1

where a sum with its upper limit lower than its lower one is defined as 0. The
function log P;(C;) is made up of logarithmic segments and is continuous and
monotone increasing. We can then solve problem (4) with (8) as the objective
function.

There are two difficulties with this exact model. First, given the form of the
functions (8), the solution of the main allocation problem (4) is likely to be diffi-
cult since the objective function is nonlinear and not differentiable. The second
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and more serious difficulty is that the exact calculation of the functions (8) re-
quires the knowledge of all the requests for each connection of all the terminals
(i.e., all the d; ;). This is not really surprising since we insist on calculating a
truly optimal solution and we should expect that we would need as much infor-
mation as if we were solving directly problem (1-3). We know that this is not
feasible in practice and we want to investigate methods that would require less
information and also perhaps make for an easier allocation problem.

4 Approximations

We examine here a number of approximations to the exact allocation problem in
order to limit the information to be sent by the terminals to the controller. We
proceed as follows. We determine what information is available and we describe
a simple allocation procedure that has already been suggested elsewhere or that
seems natural. We then translate this procedure into an approximation of the
P;(C;) functions. In this way, we can immediately see whether an approximation
has a chance of being reasonably accurate or not. In all cases, we assume that the
value of D; is available for all terminals. We first examine a simple allocation
procedure based only on the knowledge of the D;s and then we extend the
analysis to cases where another set of numbers is available, either the number
of connections per terminal (the n;s) or the product of the requests [ j di ;.

4.1 Approximation with D; only

The simplest scalable technique is a two-level algorithm based on summing the
demands in each terminal and sending them to the controller that allocates
fairly and optimally the available capacity among the terminals based on these
aggregated demands. Once the terminal allocation is done and received by the
terminals, each terminal allocates fairly its quota among its connections. The
C;s are calculated by solving the optimal terminal allocation problem

m

— . 3 L < .
max P Hq subject to ;c Cand C; <D (9)

This amounts to replacing the exact P;(C;) function of eq. (4) by the linear
approximation P;(C;) = C;. Going back to eq. (7), we see that this is equivalent
to assuming n; = 1. This is hardly surprising since we have a single value to
characterize terminal 1.

Once this solution is obtained, each terminal ¢ allocates its C;s by solving the
sub-problem (5). We can also see on Fig. 1 the plot of approximation (9) with
the exact solution and the upper bound. We have also tried another method in
which each terminal computes its own estimate of a best value for the number
of connections and then uses this to do the allocation. In that case, the terminal
allocation problem becomes degenerate and numerical results have shown that
this yields to a very poor approximation of log P;(C;). For these reasons, this
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approach has not been pursued. It should be quite clear that the more or less
obvious approximations involving only the values of D; are not going to give
very good results and that more information is needed.

—— Exact
15 --- D, only
— - — Asymptote
T 10 ymp
- |
< |
o 5| .--
2
0 d=10, 50, 300, 500, 800
_5 —
T I T I T I T I
0] 400 800 1200 1600
C

Fig. 1. Comparison of uniform approximation with the exact solution

4.2 Approximations with D; and n;

Given that the solutions computed from the models with only the D;s available
can be relatively poor, we suggest that more information about the terminals
should be used in the solution of the terminal allocation problem. In order to
minimize the signalling overhead, we use only one additional value per terminal
and the one that readily comes to mind is the n;s, the number of connections in
terminal i. Hence each terminal 7 sends an aggregated request made up of two
terms: D; and n;.

We consider first the simplest allocation technique that makes use of both
the D;s and the n;s. Let n = ZZ n; be the total number of connections. A
straightforward method would be to allocate C'/n to each connection, which
assumes in effect that all connections have the same request. For this reason,
we call this the uniform approximation. Each terminal that has a total request
D; < C; = n;(C/n) gets its allocation D;. This is subtracted from C, leaving
a residual capacity C’. This in turn is allocated among the remaining terminals
with the same rule, and so on until all the capacity has been allocated. Once
the allocation C; has been computed, each terminal solves its own allocation
problem (5) as before.

The question is then what terminal allocation problem is being solved by this
algorithm. Let 7;] be the set of connections that belong to terminal i. Rewrite
problem (1-3) as:

max Z = HHx” subject to z; ; < d; ; and Za:” =C. (10)

i J ,J
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The uniform allocation can be rewritten as

C
zij =y Vj€Tand d;; = o v (i,7)

C
Z = in"’ bject t P < — d ii:C
max |l|(y) subject to y; < — an g ;Y

3

and if we define X; = n;y;, we get the equivalent form

X\
max Z = H (—) subject to X; < mn; (g> and E X, =C (11)

and we see that in that case, we get the power allocation

Pi(C;) = (g)n (12)

n;

This is the first segment of the real function as can be seen from Eq. (7).

4.3 Approximation with D; and A;

Although the n; are an obvious choice to transmit in addition to the D;s, this is
not the only possibility. Another quantity that is readily available is the product
of the demands A; = H?;l d; ; which could be used to obtain a better allocation
of the terminal capacities.

One way to use the value of A; would be to assume that there are two
connections for each terminal and to try to determine their requests d; and ds
such that d; + dy = D and log(d;dz) = log(A). Unfortunately, it is not difficult
to find examples of request vectors d;,j = 1...n such that there do not exist
two real values for d; and ds.

Although approximation (12) seems to be reasonably accurate, we can see
that it overestimates the exact solution at the boundary C; = D,. Letting E(C’Z)
denote the value of approximation (12), we get at the boundary

- D;\™

Pi(D;) = (n—> and P;(D;) = Hdi,j
J

which are different. We could hope for a better fit if we could use an approx-

imation of the form (12) but with the requirement that it should go through

the exact value of P;(D;) at C; = D;. In order to do this, we need the value of

logA;, =5 ;logd;. We want the terminal to determine and send an n* such that

log A = n*(log D — logn™). (13)

This function is concave and can have 0, 1 or 2 solutions depending on
whether D/e is larger (2 solutions), equal (1 solution) or smaller (no solution)
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mations approximation and the D;s only

than log A. In practice, it seems that there are generally two solutions and that
the smaller one is much better that the larger one. A comparison of the four
approximations is shown on Figure 2. The case corresponding to the larger so-
lution of eq. (13) is not shown because it is not very good. We can see that the
uniform approximation is an overestimate of the true function while the use of
the product of the demands yields a lower bound.

5 Accuracy of the Approximations

The accuracy of the approximations can be checked by comparing with the
optimal solution of the total problem. The values used to plot the figures are
computed with 1000 random cases for each given number of terminals. Each
case is obtained by generating an independent random value of n; (number
of connections per terminal ¢) and d;; (the request of each connection j of
terminal ¢) with P(n; = k) = 0.09 for 1 < k < 10 and equally distributed for
the remaining values up to a value of 32 and d;; equally distributed between
1 and 9. These connections are competing for an overall capacity equal to 5120
units corresponding to 32 time slots and 160 carriers in a (MF-TDMA) Multi
Frequency Time Division Multiple Access uplink.

A first criterion that we use is the relative error A defined as A = |Z — Z*|/|Z*|
where Z is the value of the objective function obtained with the approximation
and Z* is the optimal value of the objective function.

We can already see that the approximations of the P;(C;) functions with
D; only have a very poor accuracy and this can be checked in Fig 3 where we
show on a logarithmic scale the relative error as a function of the number of
terminals. We can see that this relative error varies widely, in some cases being
more than a factor 10. In other words, for some configurations, the fairness of the
approximate allocation is more than 10 times poorer than the optimal allocation.
The really interesting cases are the ones with an aggregate request based on two
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terms, the D;s and either the n;s or the A;s. The first case is compared in Fig 4
and the second in Fig. 5 where we have plotted the relative error as a function
of the number of terminals. In both cases, when there is a small number of
terminals m, all demands can be met and all methods give identical results,
which explains why the curves go to zero near the origin. Similarly, when m is
large, it is impossible to satisfy any request and in that case also all the methods
are equivalent. In the middle region, the peak of the error curve occurs when
the approximate values coincide with Z* and in this region, the approximation
where we send the values of the n;s is much better than the one where we use
the A;s.

-3
5x10° — 0.4
—_ 4 — —
2 S 0.3
() (]
E 37 g
8 8 0.2
[7]
& 2 @
1 0.1
O T I T I T 0'0 T I T I T
200 400 600 200 400 600
No terminals No terminals
Fig. 4. Relative error of the approxi- Fig. 5. Relative error of the approxi-
mation with the D;s and n;s mation with the D;s and A;s

Another criterion to quantify numerically the unfairness of a scheme is the
fairness index introduced by K.Jain in [4]. Suppose that an approximate solution
allocates Z1,Ta, . . . , T, instead of the optimal allocation =7, x%, - - -,z . Defining
for each connection j the normalized allocations x; = T;/x7, the fairness index

2
v is then defined as v = (ZJ a:j) /(n > x?)

If the allocation given by the approximate solution is the same as the optimal
one, then v = 1, and the system is 100% fair. As the disparity increases, fairness
decreases and a scheme which favors only a selected few connections has a fairness
index near 0. The results shown on Fig. 6 indicate that for the approximation
with D; only, the scheme can be only 55% fair. In other words, this scheme favors
55% of the connections and discriminates the others. However, the scheme using
D and n is almost 99% fair.

A third criterion has been proposed by L.Massoulié in [5] for file transfers.
In that case, a legitimate bandwidth sharing objective would be to minimize
the time needed to complete the transfers. This is done via a potential delay
equal to the reciprocal of the rate allocation 1/x; and by finding the allocations
that minimizes the total potential delay ;1 /z;. In fact, we can show that the
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algorithm for the main problem (1-3) also minimizes the total potential delay. We
can see on Fig. 7 that the approximation using D; increases the optimal potential
delay by 40% whereas its increase is less than 0.5% for the approximation with
D and n.

The conclusion is quite clear that the best accuracy is obtained when each

terminal transmits both D; and n;. Given the high accuracy of the approxima-
tion, we feel that it is not necessary to look for better approximations and that
a two-level algorithm with these parameters is sufficient.
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