On the Capacity of Ad hoc Networks under  Both these approaches lead to unbounded delays, and hence

Random Packet Losses under either (i) or (ii), a delay-capacity tradeoff studystu
be undertaken instead of a capacity study. In practicakayst

Vivek P. Mhatre, Catherine P. Rosenberg, Ravi R. MazumdgrOrder to keep the overall delay under tabs, the block kengt
as well as the maximum number of retransmission attempts
(in case retransmissions are employed) are pre-determined
bounds on the capacity of a random ad hoc network. Previous and fixed. H_ence, Wh"e the threshold-based_ packet receptio
approaches assumed a link layer model in which if a transmitr- model used n [1] .mlght .be a reasonable choice for successful
receiver pair can communicate with each other, i.e., the Sigal Packet reception in a single hop network such as a cellular
to Interference and Noise Ratio (SINR) is above a certain network, we argue that it needs to be refined when applied to a
threshold, then the transmitted packet is received error-fee by  multi-hop network. In an ad hoc network, each packet tragers
the receiver thereby. Using this model, the per nod.e capagitof multiple hops. When a packet is relayed over a large number
the network was shown to be® ( 775 ). In reality, for any  of |inks, each of which being likely to drop the packet with
finite link SINR, there is a non-zero probability of erroneous 5 .grtain probability (no matter how small it is), the end-to
reception of the packet. We show that in a large network, as N .
the packet travels an asymptotically large number of hops fom end throughput can q_egrade significantly due todimeulative
source to destination, the cumulative impact of packet logs over Packet error probability.
intermediate links results in a per-node throughput of onlyO (1) More generally, in this paper, we show that when studying
under the previously proposed routing and scheduling stratgy. capacity scaling problems, the underlying hypotheses have
We then propose a new scheduling scheme to counter this effec gjgnificant impact on the results. In particular, we showt tha
The proposed scheme provides tight guarantees on end-to-@&n . .
packet loss probability, and improves the per-node througput Wh_e_n pack_et losses over links are takel_‘l into accoqut_, we get
strikingly different results thereby showing the sendiyivof
to Q { ————5=— | where a > 2 is the path loss exponent. capacity results to the underlying hypotheses.
Vn(logn) 222 For a large random ad hoc network, for a broad range of
routing and scheduling schemes including the one propased i
KEYWORDS [1], we show that the cumulative impact of per link packeslos
gesults in a much lower per-node throughpua)(%) instead

of © (\/# . In order to counter the above throughput

Abstract— We consider the problem of determining asymptotic
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. INTRODUCTION reduction due to cumulative packet error effect, we progose
. . new scheduling policy that uses lower spatial reuse to reduc
The problem of the capacity of wireless ad hoc networks g policy b

was first analyzed by Gupta and Kumar in their seminal Womterference, and thereby improves the SINR of each linie Th

[1]. This work was followed by several studies on the Cagaciproposed cheg.llj.lmg p((j)hcy |r|r1prpves the egd-t(;]-end hpacket
of wireless ad hoc networks [3], [4], among others. Thseuccess probability, and results in a per-node throughput o

authors in [1] derive asymptotic bounds on the capacity of4| ———=— |, wherea > 2 is the path loss exponent.

(log n) 2(e—2)

random ad hoc network in which nodes are deployed randomeTﬁ/g models and assumptions used in our analysis are pre-

and uniformly over the surface of a sphere of unit area. EagBnted in Section II. Section IIl contains results on thigug
node picks a random node as its destination node, and sepdfction due to cumulative packet loss. Our new scheduling

packets to that node by using multi-hop communication. Alg|icy, and the corresponding capacity results are pregent
the nodes use a common transmit power level. The auth@fsction |v. Finally, we conclude in Section V.

show that each node can achieve a throughp@t ?ﬁ)

packets per second. They also provide a scheduling anahgputi Il. MODEL FORRANDOM NETWORKS

strategy that achieves this throughput. We use the standard ordering notations
The authors in [1] assume a link layer model in which, if th&(.), o(.), Q(.), w(.), ©(.).

Signal to Interference and Noise Ratio (SINR) at the receivecaling model: We assume that nodes are randomly and

is greater than a certain threshold then the packet is redeiwniformly deployed over a spher§® of arean so that the

successfully by the receiver. In practical wireless nekspr node density is kept constant. Under this model, the far-

for a given modulation and coding scheme, and for a fixdi¢ld assumption can be employed in the path loss model [5].

block length, as long as there is some noise and interferentbe nodes are assumed to be stationary. Each node picks

i.e., as long as the SINR of a link is finite, there is a certai random node as its destination node, and sends packets

non-zero probability of packet error. Hence, the hypothes$i to this destination node. Each node uses the same transmit

perfect packet reception when the link SINR is above a aertgiower P, and uses intermediate nodes as relays to reach its

threshold can be realized only when one of the following @estination. We assume that asscales, the modulation and

assumed: (i) infinite block length, or (ii) infinite number ofcoding scheme, as well as the block length remain fixed.

retransmissions, i.e., retransmit the packet until it gatsugh. Furthermore, we assume that a common frequency baiid of

units is available to all the nodes. This models the scenario

Vivek P. Mhatre is with Motorola Inc., Arlington Heights, IIUSA. Email:  jn which although the network size increases, the undaglyin

mhatre@gmail.com, Catherine P. Rosenberg and Ravi R. Mdaurare

with the Department of Electrical and Computer Engineeridgiversity of nardware and software capabilities of the nodes, as welleas t

Waterloo, Canada. Emaifcath,mazunh@ece.uwaterloo.ca. available spectrum are unchanged.



Physical layer model: The SINR at a receiver nodewhen Scheduling Policy: We first consider the scheduling policy

nodei is transmitting a packet tg is as follows. proposed in [1], and obtain capacity results under thiscgoli
I in Section Ill. We refer to this policy as;. This scheduling

SINR = IXi—X;1° ’ ) policy uses a vertex-coloring algorithm to guarantee tlaahe

N+ ﬁ cell gets a transmission opportunity at least once every
k€T, k#i slots, whereK is a constant that is independentrofin other

where N is the noise powerX; is the position vector of words, Fhe length of the schedule is bounded even ssales. _
nodei, T is the set of all the nodes that are transmittinlf) Section IV, we then propose a new improved scheduling
simultaneously with node, and o > 2 is the path loss policy, w5 that yields better capacity under our physical layer
exponent. As in [1], we assume that the transmit power of alodel. The length of the schedule under, K, grows as a
the nodes can be scaled withso that the effects of receiverfunction of»,
noise can be ignored, and the network becomes interference
dominated. We therefore ignore the tei¥nin the denominator ~ I1l. CAPACITY UNDER SCHEDULING POLICY 71 AND
of SINR henceforth. Two nodes can communicate with each CONTINUOUS ¢(+)
other if the SINR at the receiver node is greater than a certai Recall that we assume that.) approaches unity continu-
threshold, say3. In [1] the authors assume that if two nodesusly as the SINR goes to infinity. Under this model, we show
can communicate with each ogher, then the transmitted packeat the scheduling policy; used in [1] results in a network
is received error-free. Thus, if(-) is the mapping between capacity ofO (%)
the SINR and the probability of successful packet reception Let ; be the line segment along the surface & that
then the model used in [1] is equivalent to the following. connects the-th source-destination pair (henceforth referred
) to as thei-th connection). We also udg; to denote the length
»(SINR) = 1 if SlNR_ 26, (2) of the line segment joining thé-th source-destination pair.
0 otherwise. As per the straight line routing scheme, the packets of the
i-ith connection are relayed hop-by-hop by every cell which
intersects linel;. Over each hop, any node in the relaying cell

assume that the probability of a error-free packet recapsi@a may forward the packet. The scheduling algoritam,and the

" ) g functi £ SIN that h uniform cell sizes ensure that communication between any tw
continuous increasing function of S1 B(.), that approac ©S hodes in the neighboring cells is possible by guarantediag t

tL‘ﬁe SINR at the receiving node is greater than or equal to
see [1] for more details). The following lemmas are preseént
hout proofs (see [6] for proofs).

The key contribution of our work isto derive capacity results
under the following more accurate physical layer model. We

SINR value, there is a non-zero probability that the packet
received in error which amounts to packet loss. The res

carry over to the case in which the number of retransmissionsi_emma 1: For the straight line routing scheme, the number

allowed is finite but fixed, i.e., do not depend on hoos F: f tioni is © (£:) M isel
Interference model: We assume that the interference observeOJ Ops1; for connection: 1S (E)' ore precisely,

by a packet over different hops along its path from source to 1L; 16 L;

destination is independent across all the hops. Note tleat th gp_n < H; < 7p_n'

set of interferers active during the transmission of a packe Lemma 2: Fix ¢ such that) < ¢t < 1. For connectioni, out
over different hops, and the actual packets that the iniagfe of H; total hops, leth; hops be such that each of these hops
nodes transmit during those slots are unlikely to be caedla covers a distance of less tham,. Then

as the packet moves along its path. Furthermore, the iniegfe

16t
signals themselves, i.e., the sequences of bits in thefénitey H;—h; > Li ( _ 7) )
packets can be assumed to be independent of each other. Hence pn \ 8-t
the assumption of independence of interference acrosgeult Thus, for the aboved; — h; hops, the signal received at the
hops. receiver is at the mosP(tp,, ) *.

Network connectivity and routing: In order to ensure net- In [1], scheduling policyr; was proposed to guarantee
work connectivity, we do the following. The surface of then SINR of at leasts at the receiver of every scheduled
sphere is covered by a Voronoi tessellation in such a waansmission. This scheduling policy corresponds to algrap
that each Voronoi celVV can be enclosed inside a circle ofcoloring problem, and it was shown that the maximum number
radius2p,,, and each circle encloses a circle of radiyys(all  of colors required to color all the cells is upper bounded by
the distances are measured along the surfac&*pfUsing a 1+c;, wherec; is a fixed constant that is independentifsee
simple extension of connectivity results in [2], we showttifia Lemma 4.4 in [1]). Using this scheduling scheme, each cell
pn = O (VIogn), then network connectivity can be ensuredets a transmission opportunity at least once every; time
with high probability (see [6] for details). In particulane slots. The following lemma shows that under such a scheglulin
choosep,, to be the radius of a circle of ard@@0logn on S2. strategy, except for a small fraction of hops, all the rerimgjn
We assume the straight line routing policy from [1] in whiclhops of a connection receive a certain minimum amount of
packets are routed along straight line paths between souricgerference from other simultaneous transmissions.
destination pairs, i.e., every cell that intersects thaight line Lemma 3: Fix M > 9. Let N; be the number of hops of
joining a source-destination pair, relays the packetsaifplair. connection: such that there is no simultaneous interfering



transmission within a circle of radius\/ + 8)p,, around the 100logn, the per-node throughput that can be achieved is

receivers of those hops. Then, O(2).
Li (2(1+¢1) Outline of the proof: The proof consists of two parts. In
N; < — (T) , the first part, we show that under scheduling poligy the
P maximum rate,\,,, at which a node can inject packets into
wherec, is the constant from Lemma 4.4 in [1]. the network is upper bounded by;.—. This result follows
Using the above lemma, we have the following importaifom the fact that each cell contains at leastlogn nodes
result. with high probability. In the second part of the proof, we

Proposition 1: There exist fixed constants and Mo, that show that the end-to-end probability of packet deliveryany
do not depend om, such that for at least;/16p, hops of connection decays d82". These two results imply that when
connection, the SINR is less than a fixed constahtwhere intermediate packet losses are accounted for, the déstinat

My +8\° node will receive packets at a rate ©f(). In the following,

Bo = ( o ) . we provide details of the second part of the proof.
We know from Proposition 1 that, among tli& hops of
Since ¢(-) is continuous, and the SINR is upper boundeghnnectioni, at leastL;/16p, hops have a probability of
by a fixed constanti,, the probability of successful packetyacket success of no more thats,). Thus,
reception for these hops is also upper bounded by a fixed .
constantp(3y) < 1. An < Ao {0(Bo)} T00n 7
Proof: Let A; be the set of hops of connectianfor

which the received signal is at the md3ttp,,) . Then, given Note thatZ, are i.i.d. random variables. By taking the ex-
€1 > 0, we can findt > 0 small enough so that using Lemmapectation with respect t4;, the end-to-end throughpiA,, |

is,
L; /1
|Ai] > o (g — 61) . (3

n

E[An) = Er[An) € A B {(Wﬁo)}ﬁ)h}

Let B; be the set of hops of connectiarfor which there is —\,E; [5L1.] . ®)

no simultaneous transmissions within a distance\df+ 8)p,,
of the receiver. Using Lemma 8B;| = N;, and giveres > 0,

where we have substitutedl = {qb(ﬁo)}ﬁ. Note that in
we can choosé/ large enough so that

determining the average end-to-end throughpid,], we

Bl < L; (2(01+¢1) - L; 4 take expectations at two levels; once to take into account

|Bil < D M = p_nEQ' ) the randomness due to the possibility of packet error on each

link, and once to take into account the randomness due to the

locations of the source and destination nodes. Also note tha

|A; N B;°| > |A4;| — | Byl 0 < d < 1. SinceL; is a line connecting two points picked at
L (1 random on the surface a2, we can show that (see [6] for
Pn (8 )

proof).
ey
If we pick e; = e2 = 1/32, and choosé =ty and M = M, E, [5% _ 2m (1 +9 )
corresponding to this choice ef, ¢, then 47 + n(logd)?

|A; N B;°| > 16L (5) Using (8) and (9), and substitutingy= {qb(ﬁo)}ﬁ, we get
Pn
Note thatA4,; N B;° is the set of hops over which the received 5127 p,,> (1 + {q&(ﬁo)}m)
signal is no more that(top,)~“, and there is at least one E[A,] < A,
simultaneous transmission within a distance bf, + 8)p,, of (10247 p,? 4 n(log ¢(50))?)
the receiver. This in turn means that for these hops, the SINR 10247p,,*

is upper bounded by (10247p,? + n(log ¢(60))?)’

P(t()pn)ia . M0+8 ai An 10247Tpn2
P((Mo-i-S)Pn)_a_< o ) =b- ) < g o(0))?

m <\, 2 1Ogn, sincep, = © (\/@)
As the number of hops between source and destination 1 "

e . . cologn 1
scales to infinity, and as per the above result, a fixed fractio < =0 <—>
of those hops have a certain minimum non-zero packet loss S0logn  n "
probability. Hence, we can show that the expected end-tb-en ]
throughput of a node after accounting for the packet losses i Remark: The above bound on the throughput also holds
given by the following result. for a broad class of routing schemes, i.e., Proposition gshol

Proposition 2: Under scheduling policyr;, continuous even when the assumption of straight-line routing is redaxe
¢(), and with p,, chosen to be the radius of a disk of areésee [6] for details).

Thus using (3) and (4),

— g €& —€

)

< An since¢(fy) < 1.

SINR <




IV. CAPACITY UNDER A NEW SCHEDULING POLICY 73, large ad hoc network i€ LI ) and the bound
AND CONTINUOUS ¢(+)

n(logn)2(x=2
) ) ) can be achieved under Scrgt(jlu%in)g (POI;@y

In this section, we show that if we reduce the extent of  proot: |f each connection generates packets at a rate of
spatial reuse via scheduling, then we can bound the end- yhon from Lemma 4.12 in [1], the total load of transmitting
to-end packet loss probabilityjot just the per link packet packets on each cell is upper boundedeby,, /n Togn with
loss probability. This restricts the throughput reductitbue to high probability. When the cell gets an opportunity to traits
cumulative packet loss. The proofs for the following lemmas ses the entire bandwidth to transmit at a ratélof Thus,
can be found in [6]. _ _ _ with high probability, a rate of\,, can be scheduled if the

Lemma 4: For a givere > 0, if a scheduling policy eNnsureSo|iowing holds.
that each transmission has an SINR of at legst> logn, W
and if the network is large enough, i.e, =1 then / A

g g > 3 csAny/nlogn < %

. 5\/me”
each connection has an end-to-end cumulative packet loss n
probability of no more than. =\, < w
Lemma 5: For each scheduled transmission of a cell an  csv/nlogn ((Io +ay (1Ogn)7<aiz) +as (1Ogn)ﬁ
SINR of at least3,, = logn is guaranteed if all the cells that (12)
are within a distancdz,, of the given cell are silent, where
R, is given by: using K,, = V,, + 1, and (11), and wherey, a;, anda, are

constants that do not depend an

1
B —— 256logn \ =2 The goodput after accounting for cumulative packet losses
R =20ylogn <+4 <m> ) ' (10) is then given by:

Concurrent transmissions that are at lefdstdistance apart E[A,] = u E)VL 3
can then be scheduled using the following policy. csv/nlogn (ao + a1 (logn) @2 + ay (log n)a—z)
Scheduling policyms: Consider the graph in which each cell
is represented by a vertex. Two vertices of the graph have an = (—W> .
edge between them if and only if their corresponding cells Vvn (logn)x==2
are within a distance ofz,, from each other. Since the area [ ]
of each cell is lower bounded by0rlogn, the number of
cells within a distanceR,, of a cell, and correspondingly the V. CONCLUSION
maximum degree of a vertex in the corresponding graph is
upper bounded by, given by

V, =8 (1 +4 (LGIGg"

Our results show that idealized modeling assumptions can
lead to optimistic conclusions, and hence for scaling tech-
1N\ 2 nigues to provide useful guidelines it is important to under
( %) ) ) (11) stand the limitations of the underlying assumptions.
o —
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