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On the Capacity of Ad hoc Networks under
Random Packet Losses

Vivek P. Mhatre, Catherine P. Rosenberg, Ravi R. Mazumdar

Abstract— We consider the problem of determining asymptotic
bounds on the capacity of a random ad hoc network. Previous
approaches assumed a link layer model in which if a transmitter-
receiver pair can communicate with each other, i.e., the Signal
to Interference and Noise Ratio (SINR) is above a certain
threshold, then the transmitted packet is received error-free by
the receiver thereby. Using this model, the per node capacity of
the network was shown to beΘ

“

1
√

n log n

”

. In reality, for any
finite link SINR, there is a non-zero probability of erroneous
reception of the packet. We show that in a large network, as
the packet travels an asymptotically large number of hops from
source to destination, the cumulative impact of packet losses over
intermediate links results in a per-node throughput of onlyO

`

1
n

´

under the previously proposed routing and scheduling strategy.
We then propose a new scheduling scheme to counter this effect.
The proposed scheme provides tight guarantees on end-to-end
packet loss probability, and improves the per-node throughput

to Ω

 

1

√

n(log n)
α+2

2(α−2)

!

where α > 2 is the path loss exponent.
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I. I NTRODUCTION

The problem of the capacity of wireless ad hoc networks
was first analyzed by Gupta and Kumar in their seminal work
[1]. This work was followed by several studies on the capacity
of wireless ad hoc networks [3], [4], among others. The
authors in [1] derive asymptotic bounds on the capacity of a
random ad hoc network in which nodes are deployed randomly
and uniformly over the surface of a sphere of unit area. Each
node picks a random node as its destination node, and sends
packets to that node by using multi-hop communication. All
the nodes use a common transmit power level. The authors
show that each node can achieve a throughput ofΘ

(

1√
n log n

)

packets per second. They also provide a scheduling and routing
strategy that achieves this throughput.

The authors in [1] assume a link layer model in which, if the
Signal to Interference and Noise Ratio (SINR) at the receiver
is greater than a certain threshold then the packet is received
successfully by the receiver. In practical wireless networks,
for a given modulation and coding scheme, and for a fixed
block length, as long as there is some noise and interference,
i.e., as long as the SINR of a link is finite, there is a certain
non-zero probability of packet error. Hence, the hypothesis of
perfect packet reception when the link SINR is above a certain
threshold can be realized only when one of the following is
assumed: (i) infinite block length, or (ii) infinite number of
retransmissions, i.e., retransmit the packet until it getsthrough.
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Both these approaches lead to unbounded delays, and hence
under either (i) or (ii), a delay-capacity tradeoff study should
be undertaken instead of a capacity study. In practical systems
in order to keep the overall delay under tabs, the block length,
as well as the maximum number of retransmission attempts
(in case retransmissions are employed) are pre-determined,
and fixed. Hence, while the threshold-based packet reception
model used in [1] might be a reasonable choice for successful
packet reception in a single hop network such as a cellular
network, we argue that it needs to be refined when applied to a
multi-hop network. In an ad hoc network, each packet traverses
multiple hops. When a packet is relayed over a large number
of links, each of which being likely to drop the packet with
a certain probability (no matter how small it is), the end-to-
end throughput can degrade significantly due to thecumulative
packet error probability.

More generally, in this paper, we show that when studying
capacity scaling problems, the underlying hypotheses havea
significant impact on the results. In particular, we show that
when packet losses over links are taken into account, we get
strikingly different results thereby showing the sensitivity of
capacity results to the underlying hypotheses.

For a large random ad hoc network, for a broad range of
routing and scheduling schemes including the one proposed in
[1], we show that the cumulative impact of per link packet loss
results in a much lower per-node throughput ofO

(

1
n

)

instead

of Θ
(

1√
n log n

)

. In order to counter the above throughput
reduction due to cumulative packet error effect, we proposea
new scheduling policy that uses lower spatial reuse to reduce
interference, and thereby improves the SINR of each link. The
proposed scheduling policy improves the end-to-end packet
success probability, and results in a per-node throughput of

Ω

(

1
√

n(log n)
α+2

2(α−2)

)

, whereα > 2 is the path loss exponent.

The models and assumptions used in our analysis are pre-
sented in Section II. Section III contains results on throughput
reduction due to cumulative packet loss. Our new scheduling
policy, and the corresponding capacity results are presented in
Section IV. Finally, we conclude in Section V.

II. M ODEL FOR RANDOM NETWORKS

We use the standard ordering notations
O(.), o(.), Ω(.), ω(.), Θ(.).
Scaling model: We assume thatn nodes are randomly and
uniformly deployed over a sphereS2 of arean so that the
node density is kept constant. Under this model, the far-
field assumption can be employed in the path loss model [5].
The nodes are assumed to be stationary. Each node picks
a random node as its destination node, and sends packets
to this destination node. Each node uses the same transmit
power P , and uses intermediate nodes as relays to reach its
destination. We assume that asn scales, the modulation and
coding scheme, as well as the block length remain fixed.
Furthermore, we assume that a common frequency band ofW
units is available to all the nodes. This models the scenario
in which although the network size increases, the underlying
hardware and software capabilities of the nodes, as well as the
available spectrum are unchanged.
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Physical layer model: The SINR at a receiver nodej when
nodei is transmitting a packet toj is as follows.

SINR =

P
|Xi−Xj |α

N +
∑

k∈T , k 6=i

P
|Xk−Xj |α

, (1)

where N is the noise power,Xi is the position vector of
node i, T is the set of all the nodes that are transmitting
simultaneously with nodei, and α > 2 is the path loss
exponent. As in [1], we assume that the transmit power of all
the nodes can be scaled withn so that the effects of receiver
noise can be ignored, and the network becomes interference
dominated. We therefore ignore the termN in the denominator
of SINR henceforth. Two nodes can communicate with each
other if the SINR at the receiver node is greater than a certain
threshold, sayβ. In [1] the authors assume that if two nodes
can communicate with each other, then the transmitted packet
is received error-free. Thus, if̂φ(·) is the mapping between
the SINR and the probability of successful packet reception,
then the model used in [1] is equivalent to the following.

φ̂(SINR) =

{

1 if SINR ≥ β,

0 otherwise.
(2)

The key contribution of our work is to derive capacity results
under the following more accurate physical layer model. We
assume that the probability of a error-free packet reception is a
continuous increasing function of SINR,φ(·), that approaches
unity as the SINR approaches infinity. Hence, for every finite
SINR value, there is a non-zero probability that the packet is
received in error which amounts to packet loss. The results
carry over to the case in which the number of retransmissions
allowed is finite but fixed, i.e., do not depend onn.
Interference model:We assume that the interference observed
by a packet over different hops along its path from source to
destination is independent across all the hops. Note that the
set of interferers active during the transmission of a packet
over different hops, and the actual packets that the interfering
nodes transmit during those slots are unlikely to be correlated
as the packet moves along its path. Furthermore, the interfering
signals themselves, i.e., the sequences of bits in the interfering
packets can be assumed to be independent of each other. Hence
the assumption of independence of interference across multiple
hops.
Network connectivity and routing: In order to ensure net-
work connectivity, we do the following. The surface of the
sphere is covered by a Voronoi tessellation in such a way
that each Voronoi cellV can be enclosed inside a circle of
radius2ρn, and each circle encloses a circle of radiusρn (all
the distances are measured along the surface ofS2). Using a
simple extension of connectivity results in [2], we show that if
ρn = Θ

(√
log n

)

, then network connectivity can be ensured
with high probability (see [6] for details). In particular,we
chooseρn to be the radius of a circle of area100 logn on S2.
We assume the straight line routing policy from [1] in which
packets are routed along straight line paths between source-
destination pairs, i.e., every cell that intersects the straight line
joining a source-destination pair, relays the packets of that pair.

Scheduling Policy: We first consider the scheduling policy
proposed in [1], and obtain capacity results under this policy
in Section III. We refer to this policy asπ1. This scheduling
policy uses a vertex-coloring algorithm to guarantee that each
cell gets a transmission opportunity at least once everyK
slots, whereK is a constant that is independent ofn. In other
words, the length of the schedule is bounded even asn scales.
In Section IV, we then propose a new improved scheduling
policy, π2 that yields better capacity under our physical layer
model. The length of the schedule underπ2, Kn grows as a
function of n,

III. C APACITY UNDER SCHEDULING POLICY π1 AND

CONTINUOUSφ(·)
Recall that we assume thatφ(.) approaches unity continu-

ously as the SINR goes to infinity. Under this model, we show
that the scheduling policyπ1 used in [1] results in a network
capacity ofO

(

1
n

)

.
Let Li be the line segment along the surface ofS2 that

connects thei-th source-destination pair (henceforth referred
to as thei-th connection). We also useLi to denote the length
of the line segment joining thei-th source-destination pair.
As per the straight line routing scheme, the packets of the
i-ith connection are relayed hop-by-hop by every cell which
intersects lineLi. Over each hop, any node in the relaying cell
may forward the packet. The scheduling algorithm,π1, and the
uniform cell sizes ensure that communication between any two
nodes in the neighboring cells is possible by guaranteeing that
the SINR at the receiving node is greater than or equal toβ
(see [1] for more details). The following lemmas are presented
without proofs (see [6] for proofs).

Lemma 1: For the straight line routing scheme, the number
of hopsHi for connectioni is Θ

(

Li

ρn

)

. More precisely,

1

8

Li

ρn

≤ Hi ≤
16

π

Li

ρn

.

Lemma 2: Fix t such that0 < t < 1. For connectioni, out
of Hi total hops, lethi hops be such that each of these hops
covers a distance of less thantρn. Then

Hi − hi ≥
Li

ρn

(

1 − 16t
π

8 − t

)

.

Thus, for the aboveHi − hi hops, the signal received at the
receiver is at the mostP (tρn)−α.

In [1], scheduling policyπ1 was proposed to guarantee
an SINR of at leastβ at the receiver of every scheduled
transmission. This scheduling policy corresponds to a graph
coloring problem, and it was shown that the maximum number
of colors required to color all the cells is upper bounded by
1+c1, wherec1 is a fixed constant that is independent ofn (see
Lemma 4.4 in [1]). Using this scheduling scheme, each cell
gets a transmission opportunity at least once every1+c1 time
slots. The following lemma shows that under such a scheduling
strategy, except for a small fraction of hops, all the remaining
hops of a connection receive a certain minimum amount of
interference from other simultaneous transmissions.

Lemma 3: Fix M > 9. Let Ni be the number of hops of
connectioni such that there is no simultaneous interfering
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transmission within a circle of radius(M + 8)ρn around the
receivers of those hops. Then,

Ni ≤
Li

ρn

(

2(1 + c1)

M

)

,

wherec1 is the constant from Lemma 4.4 in [1].
Using the above lemma, we have the following important

result.
Proposition 1: There exist fixed constantst0 andM0, that

do not depend onn, such that for at leastLi/16ρn hops of
connectioni, the SINR is less than a fixed constantβ0 where

β0 =

(

M0 + 8

t0

)α

.

Since φ(·) is continuous, and the SINR is upper bounded
by a fixed constantβ0, the probability of successful packet
reception for these hops is also upper bounded by a fixed
constantφ(β0) < 1.

Proof: Let Ai be the set of hops of connectioni for
which the received signal is at the mostP (tρn)−α. Then, given
ǫ1 > 0, we can findt > 0 small enough so that using Lemma
2,

|Ai| ≥
Li

ρn

(

1

8
− ǫ1

)

. (3)

Let Bi be the set of hops of connectioni for which there is
no simultaneous transmissions within a distance of(M +8)ρn

of the receiver. Using Lemma 3,|Bi| = Ni, and givenǫ2 > 0,
we can chooseM large enough so that

|Bi| ≤
Li

ρn

(

2(1 + c1)

M

)

≤ Li

ρn

ǫ2. (4)

Thus using (3) and (4),

|Ai ∩ Bi
c| ≥ |Ai| − |Bi|

=
Li

ρn

(

1

8
− ǫ1 − ǫ2

)

.

If we pick ǫ1 = ǫ2 = 1/32, and chooset = t0 andM = M0

corresponding to this choice ofǫ1, ǫ2, then

|Ai ∩ Bi
c| ≥ Li

16ρn

. (5)

Note thatAi ∩Bi
c is the set of hops over which the received

signal is no more thanP (t0ρn)−α, and there is at least one
simultaneous transmission within a distance of(M0 +8)ρn of
the receiver. This in turn means that for these hops, the SINR
is upper bounded by

SINR ≤ P (t0ρn)−α

P ((M0 + 8)ρn)
−α

=

(

M0 + 8

t0

)α

= β0. (6)

As the number of hops between source and destination
scales to infinity, and as per the above result, a fixed fraction
of those hops have a certain minimum non-zero packet loss
probability. Hence, we can show that the expected end-to-end
throughput of a node after accounting for the packet losses is
given by the following result.

Proposition 2: Under scheduling policyπ1, continuous
φ(·), and with ρn chosen to be the radius of a disk of area

100 logn, the per-node throughput that can be achieved is
O( 1

n
).

Outline of the proof: The proof consists of two parts. In
the first part, we show that under scheduling policyπ1, the
maximum rate,λn, at which a node can inject packets into
the network is upper bounded by 1

50 log n
. This result follows

from the fact that each cell contains at least50 logn nodes
with high probability. In the second part of the proof, we
show that the end-to-end probability of packet delivery forany
connection decays aslog n

n
. These two results imply that when

intermediate packet losses are accounted for, the destination
node will receive packets at a rate ofO

(

1
n

)

. In the following,
we provide details of the second part of the proof.

We know from Proposition 1 that, among theHi hops of
connectioni, at leastLi/16ρn hops have a probability of
packet success of no more thanφ(β0). Thus,

Λn ≤ λn {φ(β0)}
Li

16ρn . (7)

Note thatLi are i.i.d. random variables. By taking the ex-
pectation with respect toLi, the end-to-end throughputE[Λn]
is,

E[Λn] = EL[Λn] ≤ λn EL

{

(

{φ(β0)}
1

16ρn

)Li

}

= λn EL

[

δLi
]

. (8)

where we have substitutedδ = {φ(β0)}
1

16ρn . Note that in
determining the average end-to-end throughputE[Λn], we
take expectations at two levels; once to take into account
the randomness due to the possibility of packet error on each
link, and once to take into account the randomness due to the
locations of the source and destination nodes. Also note that
0 < δ < 1. SinceLi is a line connecting two points picked at
random on the surface ofS2, we can show that (see [6] for
proof).

EL

[

δLi
]

=
2π
(

1 + δ
√

πn

2

)

4π + n(log δ)2
. (9)

Using (8) and (9), and substitutingδ = {φ(β0)}
1

16ρn , we get

E[Λn] ≤ λn

512πρn
2

(

1 + {φ(β0)}
√

πn

32ρn

)

(1024πρn
2 + n(log φ(β0))2)

< λn

1024πρn
2

(1024πρn
2 + n(log φ(β0))2)

, sinceφ(β0) < 1.

< λn

1024πρn
2

n(log φ(β0))2

≤ λn

c0 log n

n
, sinceρn = Θ

(

√

log n
)

≤ 1

50 logn

c0 log n

n
= O

(

1

n

)

Remark: The above bound on the throughput also holds
for a broad class of routing schemes, i.e., Proposition 2 holds
even when the assumption of straight-line routing is relaxed,
(see [6] for details).
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IV. CAPACITY UNDER A NEW SCHEDULING POLICY π2,
AND CONTINUOUS φ(·)

In this section, we show that if we reduce the extent of
spatial reuse via scheduling, then we can bound the end-
to-end packet loss probability,not just the per link packet
loss probability. This restricts the throughput reductiondue to
cumulative packet loss. The proofs for the following lemmas
can be found in [6].

Lemma 4: For a givenǫ > 0, if a scheduling policy ensures
that each transmission has an SINR of at leastβn ≥ log n,
and if the network is large enough, i.e.,n > 4

5
√

πǫ
, then

each connection has an end-to-end cumulative packet loss
probability of no more thanǫ.

Lemma 5: For each scheduled transmission of a cell an
SINR of at leastβn = log n is guaranteed if all the cells that
are within a distanceRn of the given cell are silent, where
Rn is given by:

Rn = 20
√

log n

(

+4

(

256logn

(α − 2)

)
1

(α−2)

)

. (10)

Concurrent transmissions that are at leastRn distance apart
can then be scheduled using the following policy.
Scheduling policyπ2:π2:π2: Consider the graph in which each cell
is represented by a vertex. Two vertices of the graph have an
edge between them if and only if their corresponding cells
are within a distance ofRn from each other. Since the area
of each cell is lower bounded by50π log n, the number of
cells within a distanceRn of a cell, and correspondingly the
maximum degree of a vertex in the corresponding graph is
upper bounded byVn given by

Vn = 8

(

1 + 4

(

256logn

(α − 2)

)
1

α−2

)2

. (11)

Since a graph in which the maximum degree of a node is
k can be vertex colored using no more thank + 1 colors in
polynomial time [8], we use this algorithm to vertex color the
graph. Thus, the required number of colors is no more than
Kn = Vn + 1, which is a function ofn unlike π1 where the
number of colors is a constant independent ofn.

Under scheduling policyπ2 we show that the received
interference power is bounded [6]. Indeed it can be seen that
for a path loss exponentα > 2 all r-th moments of the inter-
ference forr ≥ 2 are bounded. Moreover, since all moments
exist, in [6], we show that the interference satisfies the large
deviations principle, i.e., a moment generating function of the
interference is well defined, and hence the distribution function
of interference has exponentially decaying tail.

Proposition 3: For a given fixedǫ > 0 with scheduling
policy π2, for a large network, i.e., ifn > 4

5
√

πǫ
, each

connection has an end-to-end packet loss probability of less
thanǫ.

Proof: The proof follows from exponential tail decay,
see [6].

We thus have the following main result.
Proposition 4: When random packet losses over intermedi-

ate links are taken into account, the per-node throughput ina

large ad hoc network isΩ

(

1
√

n(log n)
α+2

2(α−2)

)

, and the bound

can be achieved under Scheduling Policyπ2.
Proof: If each connection generates packets at a rate of

λn, then from Lemma 4.12 in [1], the total load of transmitting
packets on each cell is upper bounded byc5λn

√
n log n with

high probability. When the cell gets an opportunity to transmit,
it uses the entire bandwidth to transmit at a rate ofW . Thus,
with high probability, a rate ofλn can be scheduled if the
following holds.

c5λn

√

n logn ≤ W

Kn

⇒ λn ≤ W

c5

√
n logn

(

a0 + a1 (log n)
1

(α−2) + a2 (log n)
2

α−2

)

(12)

using Kn = Vn + 1, and (11), and wherea0, a1, anda2 are
constants that do not depend onn.

The goodput after accounting for cumulative packet losses
is then given by:

E[Λn] =
(1 − ǫ)W

c5

√
n logn

(

a0 + a1 (log n)
1

(α−2) + a2 (log n)
2

α−2

)

= Ω

(

1
√

n (log n)
α+2

2(α−2)

)

.

V. CONCLUSION

Our results show that idealized modeling assumptions can
lead to optimistic conclusions, and hence for scaling tech-
niques to provide useful guidelines it is important to under-
stand the limitations of the underlying assumptions.
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