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Abstract— The Nash arbitration scheme from cooperative game theory
provides a natural framework to address the allocation of available band-
width in network links which is network (Pareto) optimal aud satisfies pre-
cise netions of fairness. In this paper we propose two distributed bandwidth
allocation schemes that allocate available badwidths to elastic sources ac-
cording to the Nash arbitration scheme. We prove convergence to the de-
sired allocations for both algorithms. Finally we show how such a scheme
can be implemented in a real network.

1. INTRODUCTION

A major aspect that has to be considered in the design of elas-
tic services is flow control since elastic sources have to con-
tinually change their rates on the basis of notifications sent by
the network [9]. There are two main types of flow control [7]:
window flow control in which source adjust dynamically their
window that represents the maximum number of packets (or
cells) allowed into the network, and rate flow control in which a
sources adjusts a rate representing the maximum rate at which it
can send data. In this paper we are interested in the development
of rate flow control schemes.

The role of flow control for elastic services in broadband net-
works consists in allocating the available capacities within the
network to competing (or active) connections in an efficient and
fair way. The issue of fairness has been addressed in the context
of the Available Bit Rate service in ATM networks by consid-
ering mainly the max-min fair allocation and its variants [12].
In a previous work [19], we have addressed the issue of allocat-
ing bandwidths to connections using a game theoretic approach,
and have proposed a comprehensive allocation policy based on
the Nash arbitration scheme notion that satisfies some fairness
axioms. In this paper, we consider this fairness criterion as an
allocation criterion that an elastic service rate control algorithm
should satisfy.

The Nash arbitrated allocation takes into account the band-
width requirements of an elastic connection defined as a Min-
imum Rate (MR) and a Peak Rate (PR). It is characterized by
a global optimization problem requiring the knowledge of con-
nection bandwidth requirements, link available capacities, and
connection-link incidence matrix. A rate control scheme in
which allocated rates are computed by a central system is unreli-
able because the communication links connecting the central to
the network are subject to failures, and has high communication
overheads since it requires a global knowledge of the varying
state of the network.

It is necessary to devise a distributed and fair rate control
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scheme in which network nodes (switches or routers) and elas-
tic sources run local procedures and cooperate by exchanging
relevant information. To this end, we address in the present pa-
per the issue of determining the Nash arbitrated allocation in a
distributed way.

Many recent works have used an optimization approach to
derive rate-based control schemes for elastic services. Opti-
mization based algorithms for rate control have been introduced
in [13] and {14]. They consider the maximization of the sum
of user utilities under network and user bandwidth constraints
and suggest distributed rate control algorithms. They prove the
stability (convergence under quasi-static assumptions) based on
mathematical idealizations as well as higher order differentiabil-
ity assumptions on the utility functions of the users. It should be
noted that optimizing sums of utility functions does not in gen-
eral lead to a Nash arbitration point with plays an important role
in that it satisfies the important notion of fairness. The case for
operating systems at Nash arbitration points has recently been
also underscored in the context of IP networks [8].

[n this paper we propose a performance based criterion rather

than an abstract utility based approach since these utilities are
difficult to quantify mathematically. In the context of packet-
switched networks Mazumdar et al [S] have used a game theo-
retic approach and derived a network global objective in order
to characterize a fair performance-oriented flow control mecha-
nism. Recently, the use of such a framework in the context of
bandwidth allocation subject to both capacity and budget con-
straints for broadband services was considered in [19].
- The paper is organized as follows. Section 2 studies the
global optimization problem, (S), that characterizes the Nash
arbitrated allocation. In section 3 two optimization algorithms
solving (S) are presented. The first algorithm is based on the op-
timality conditions. The second one is based on the correspond-
ing dual problem using a gradient-based projection technique.
These two algorithms can be implemented in a distributed way.
In Section 4 we propose implementations of rate-based control
schemes for elastic services based on the two algorithms.

Due to space limitations we only present the proofs of the
main results. Detailed proofs can be found in [20].

II. GLOBAL ALLOCATION PROBLEM

We consider a static model in which a fixed number, N, of
aclive elastic connections (users) share the capacities of L net-
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work links. A guaranteed Minimum Rate (MR), a Peak Rate
(PR), and an assigned path characterize each connection. The
network available bandwidths to be allocated are assumed to be
non-time-varying. We introduce the following notations which
will be used throughout the document: z has its value in RV
and stands for an instance of a user rate allocated vector, C is
the vector of link available capacities, and A4 is a LxV incidence
matrix. aj, is equal to 1 if the link [ belongs to the path of user
p and O otherwise.

For simplicity and without loss of generality, we assume that
on each link the spare capacity is strictly superior to the sum
of the MR;’s (i € {1,...,N'}) of the connections crossing this
link. If this assumption is not valid then our results are still valid
for the subset of connections to which we can allocate more than
the corresponding minimum rates.

In [19), a game theoretic approach has been adopted to ad-
dress the issue of efficient and fair allocation of available band-
widths between competing users (elastic connections). It has
been argued that the Nash arbitration scheme idea gives rise to
a suitable allocation policy. It has been shown that the Nash ar-
bitrated solution, efficient and fair rate allocated vector, can be
computed in a centralized way. With respect to our model and
assumptions, it is the unique solution of the following global
optimization problem, (S):

Mazgey T1iL, (2: ~ MR:)
z;>MR; i€{l,..,N}
z;<PR; 1i€{1,..,N}
(Az) < (Ch le {1)7L}

We consider the convex problem (P) (primal problem) equiv-
alent to (S) since they have the same optimal solution:
Min)GL(z) = - 2;—1 In(z; — MR;)
z;>MR; ie{l,.
z; <PR; i€{l,. N }
(Az); < (Ch le {1, oy L}

Let X be a subset of R™ defined by connection bandwidth

constraints and let £ be the Lagrangian function associated with
(P) and defined over X x RL. X and L are defined as follows:

X ={z = (z1,...,an) € RN /z; > MR,
and z; < PR;}

N
L(z,p) ==Y In(zi ~ MR))

i=1

N L

+ z ZUI alc) Ty — ECI 147

i=1 I=1

The dual function, d, corresponding to ( P) is then defined on
RL as follows:

d(p) = Mingex L(z,p) , peR” (LY

Since problem I1.1 is separable and has a unique solution, d
can be computed explicitly. Indeed, for each p € RE,
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N L
dw) =Y [-In(s( Y, m)-MR)
i=1 l-—'l,a;.—l
- Z ) 9:( Z w)) - ZC[}A[ a1.2)
=1,61¢=1 =1,a;¢=1

where for each i € {1,..., N}, gi is defined on R as follows:

o ={ P if p<prwE;
FPZ\ MR+; if p2 ity

The dual problem (D) is the following:

MazuE‘R.i d(/")

Since X is convex, GL is convex over X, and there exists
z € X such that (Az); < C) foreachl € {1, ..., L}, there exists
a Lagrange multiplier and therefore there is no duality gap (see
[17] chapter 5, for a general definition of a Lagrange multiplier).
Also, (D) has at least one optimal solution.

Let U be the set of solutions of the dual problem. This set
is also the set of Lagrange multipliers. U is nonempty and can
be characterized in many ways ([17], chapter 5). The saddle-
point characterization allows us to show that I is compact. We
know from duality theory that d is concave on RY. One can
show readily ({17], Danskin’s theorem) that d is also continu-
ously differentiable and the partial derivatives are determined as
follows:

ad . d -
Bim 3 (S w-a
lal i=1,a1i=1 I=1,01;=1

ue RL;a le {11'--)L}

‘We propose rate-based allocation schemes that aim at allo-
cating badwidths to elastic connections according to the Nash
arbitration scheme. For reliability as well as reducing commu-
nication overheads the scheme is aimed to be distributed among
network nodes and sources. These are the basic issues which
will be addressed in the sequel.

I1I. OPTIMIZATION-BASED RATE ALLOCATION
ALGORITHMS

A. Optimality-conditions-based algorithm

‘We first begin by introducing the optimality-condition based
algorithm which is related to the primal formulation.

The characterization of the Nash arbitrated allocation and the
set of Lagrange multipliers or dual solutions (U) is stated in this
following proposition {17, Chapter 5]:

Proposition I1L1: Let Z be the unique solution of the central-
ized problem (§). Let fi be 2 Lagrange multiplier for the primal
problem (P). Then, the following optimality conditions char-
acterize the pair (Z,7i):

o foreachi € {1,..., N}, let By = Yo, .y fu then:
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. _ | PR if Ef<m
BENVMR+ i T2 ppigy
o foreachl e {1,...,L},
1. (A2-C) < 0
2. (A2 -Chim =

3320
Remark 111.1: The Lagrange multipliers {14} have the inter-
pretation of being the implied (congestion) prices associated
with the links. For a complete discussion see [19].

We present an algorithm in order to solve the optimization
problem (S). The algorithm is based on the optimality condi-
tions described in proposition III.1. As will be seen later in this
section, the algorithm can be interpreted as a gradient-based al-
gorithm.

The idea of using the optimality conditions to develop algo-
rithms that solve an optimization problem is not new. For exam-
ple, F Kelly [14], [1}, and C. Courcoubetis [15] have used this
approach. We propose to develop the idea of F. Kelly ([14]) fur-
ther since we propose extensions adapted to our allocation prob-
lem (S). Moreover, we propose a discrete-step, implementable,
algorithm for which we prove the convergence.

Before presenting the algorithm we introduce some mathe-
matical definitions and some relevant theory. Let f be a func-
tion defined on R and have its value in RE. f is equal to
(frs.es fo) where for each I € {1,...,L}, f; is a real-valued
function. As will be seen later, f depends on a positive param-
eter, ¢, which is assumed to be constant in this section. Before
giving an explicit expression for f we define the following func-
tions.

x is an N-element-vector-valued function defined on RE. For
eachi € {1,..,N},

L

=g >, m)

=1, a;,=1

(I1L.3)

where g; is a real-valued function defined in the previous sec-
tion.

Foreach I € {1,.
functionw; : R = R

.,L} and € > 0, define the real-valued

w;(p)={ gz(

Define the functions {fi} as follows. For each ! € {1,...,L}

if p>0
if p<O

P_\2
pte )

N
> Xiw) - wiwm) , forpeR" U4

=1, a;;=1

filp) =

Then we can show the following result which is stated without

proof.
Lemma IIL.1: f is Lipschitz and bounded on R%. Let K be

the Lipschitz constant.
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Then:

8 Cnaz
€

N
Ky = VL (Y (PR, — MR\ N(i) + 5

i=1

—)

where Cpna; is the maximal available link capacity in the net-
work, and for each ¢ € {1,..., N}, N(%) be the number of links
crossed by user ¢

‘We now propose and study an implementable algorithm, Al,
which allows us to approximate the efficient and fair allocation
as characterized by the optimization problem (S5).

By introducing a C* function V it will be clear that the algo-
rithm uses in fact steepest-descent method in order to minimize
the function V; over RE. V; is a Lyapunov function for the sys-
tem. Proposition ITL.2 gives a condition on the stepsize which
guarantees the stability of algorithm A1.

Algorithm Al:
The algorithm is defined by a positive constant stepsize o and
by the following difference equation system of dimension L:

p+D = 4B 4o p(u®), k>0
#(0) € RL

(111.5)

Let V; be a real-valued function defined on RZ as follows:

2/ wi(p)dp -

I:-l
$ [P

i=1

gi(p)dp  (L6)

1t is easy to see that that V; is C* on RL. The first partial
derivatives of V; can be easily obtained. Indeed, for any 1 € RE
and! € {1,...,,L} we have:

—filw) (1L.7)

oV
5 (w)
It is clear from equation III.7 that algorithm Al implements
a steepest-descent technique for the minimization of V3. More-
over it can be shown that V1 is convex and proper and hence
has g unique global minimum, denoted by i, which belongs to
RYY.
%‘he following proposition deals with the convergence of Al.
Proposition I11.2: Let {p*)} a sequence generated by IIL5
such that 4 € R* and a €]0, - Then {4} converges
to i1, the unique global minimum of V3.
Proof

Let u® € R and €lo, (. We know that VV; = — f and
f is K;-Lipschitz. VW] is then K3 -Lipschitz and by the descent
Lemma [17, Appendix A.24] the following holds:
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Vi®) < ie®) -
@-Eayvneo)r as
Since a €0, Z|, then {V1(u{*¥))} is a decreasing sequence

and it is convergent since it has a lower bound (V; has a mini-
mum on R¥). We can rewrite equation IT1.8 as follows:

o
IA

of1 ~ ZLa)|vv; (o)
Vi (u®) - vy (ulkHD)

Hence ||VVi (u®)]} ~ 0 as k goes to 00.

Since V; is convex on RL and has a unique global min-
imum, see [17, Appendix B, Prop. B.9], we conclude that
{p € REVL(p) < Vi(uP)} is compact. Therefore, {u(®}
is bounded and then it has at least one limit point (Weierstrass
theorem). Let i be one limit point. g is then a stationary
point of V1 (ie VVi(i3) = 0) since VV; is continous and
limg—y0o VV3(u®) = 0. On the other hand we know that V;
has only one stationary point, which is fi. So, {u(*} has only
one limit point, ji, which is its limit. n

IN

(1IL.9)

Remark 111.2: Actually, a stepsize in the interval J0, 2]
guarantees a decrease of the cost function, V;, at each iteration.
Taking, a = RI‘I guarantees a good decrease at each iteration.

Remark I11.3: Since x is a continuous function the sequence
{x(u®))} converges to x(ii).

Validation

Algorithim Al depends on € > 0 which is used in the defini-
tion of w(.). We show that as ¢ — 0 the corresponding solution
converges to the Nash arbitrated solution.

For g > 0, let 7(¢) defined over R denote the unique global
minimum of V;(-,€) where the explicit dependence of V; on ¢
is pointed out. Likewise, let X(¢) denote x((¢)). Let Z be the
Nash arbitrated allocation vector (solution of (S)). Proposition
[11.4 shows that as € approaches 0 i7(¢) approaches U, the set of
dual solutions. Before stating the proposition we first state the
following result:

Proposition I11.3:

lim d(#(e)) = d(@), VEeT
e—0t
Proof

On R% V; can be obtained explicitly as follows,

N
Vi(re) = ~d(u) = 3 In(PRi — MRy)

=1

L
-2 z Ciln(yy +¢€)
=1

L L
Czut L
E —_— E 2el ERY,e>0
e {=1 K € (l=1 “l) one # *
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Let /i be an element of U, ¢ a positive real number, and 7()
the global minimum of V;(:,¢). Then:

d(7(e)) - d(B)| < [Vi(#(e), ) + d(@)+

N L
> In(PR; — MR;)| + 2 lne(y_ fu(e))
=1 i=1
L L
+26Crmaz 3 _ |In(i(e) +&)| +£ 3 C;  (1L10)
=1 =1
Since Ypu € R4.5,Vi(u,€) > Vi(9(e),€) and d(p) < d()
we obtain:

N
d(p) + Z In(PR; - MR;) >

i=1

Vi(#(e),e) +

L
~2¢ ) Ciin(Bi(e) +¢) (TIL11)
=1
and

N
Vi(#(e),e) + d(@)+ Y In(PR; - MR;) <

i=1

L L
26]115(2 f) — 2(2 Ci)elne

=1 1=1

L
+€(Z )]

=1

(IIL12)

Leteg > 1 and let £ €)0, €q) By equation IT1.12 we obtain:

N
Vi(#(e),6)) < -d(@)~ > In(PR;~ MR;)+

=1

L L
2
26011160( E ﬁ[) - Z( E C{) +
=1 =1

L
e(d>_Cv)

=1

Let! € {1,...,L}. We would like to show that there exists
M; > 0 such that for all € €]0,e0] #1(e) < M;. Let us assume
the contrary, i.e.;

(11.13)

VM >0 Je €]0,&0) / Bi(e) > M

Then one can construct a positive real sequence {F(en)}
(strictly increasing) such that Vn > 0, e, €]0,50] and
liMn—o00 Z1{€n) = 00. Also the following inequality holds:

Vi(P(en),€0)) 2 il (eq)lir

L
=243 C) In(||5(en)llr + €n)
i=1
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_ ad PR;
~Nin(MIpenlls +1) ~ 3 7
i=1 t

where
L
m= ke(ml,iﬁ”(ck - ¢=1§,=1 MR)
and
M= ie(I{l,?‘-).{N)(PRi - ME)

SinceVn > 0, £, €]0,ep] and gg > 1 then,

Vi(#(en), 5n)) 2 m”i}(sn)”l—

L
260(D_ C) la(l|#(en)lls + €0) — N In(M||5(en)llz +1)
=1
N PR,
"X PR - MR

i=1

(111.14)

From I11.14 we conclude that lim,, o V1 (#(€,),€n)) = 00
since limp o #(€n) = oco. This contradicts equation III.13.
Hence we conclude that for each ! €€ {1,..., L} there exists
M, > O such that for all e €]0,e0] 7(e) < M;.

Having proved that, one can now easily show from equations
1111 and IIL 12 that V4 (#(¢), &) +d(f) + ., In(PR;— MR;)
goes to 0 as £ goes to 0F. And then that lim,_, o+ |d(#(e)) —
d(ji)] = 0, for each ji in U (see equation II1.10).

Proposition 111.4:

7(e) =+ U ase—0F
Proof

Let g > 0 and € €]0, £¢]. In the proof of the previous propo-
sition we have shown that {7(€)}¢go,e,] is bounded. Define the
function A as follows

t> L
€0

1
Then, {’\(t)}tZ;lo' is bounded. Let L* be the set of limit
points of A(¢). That is,
LY = {AeRiE|3{tn} st ’}Lnéotn =00

and lim A(tn) = A}
n-—>00

From [16, Appendix A.2], it follows that A\(t) — Lt ast —
o. Let X be an element of L*. Then there exists a sequence
{tn} such that Vn > 0 tn, > ;1; and limnoyeo A(tn) = A
Since A(tn) = (&) and from Proposition II1.3 we have the
following:

Since d is continuous, limp—c0 d(A(ts)) = d(A). Hence A
is an element of U. As a result L+ C U and then A(t) —
U ast— oo. Hence, 7{e) = U ase — 0+.

Finally we show that as ¢ — 0, Z(c) converges to the Nash
arbitrated allocation vector. This just follows from the continu-
ity of ®(¢) and the above result.

Proposition I11.5:

This completes our analysis of the first algorithm based on the
optimality conditions.

B. Dual-based algorithm

We propose an algorithm that solves the dual problem (D)
and which is based on a simple gradient-based projection
method. This algorithm, A2, uses a constant stepsize. As will be
shown later U, the set of the solutions of the dual problem, is the
set to which the algorithm converges. Moreover, the correspond-
ing primal solutions converge to the unique Nash arbitrated al-
located vector (see proposition II1.7). The dual algortihm A2 is
presented in the following.

Algorithm A2:

It is defined with a positive constant stepsize -y and by the
following difference equation system of dimension L. For each
le{1,..,L},andk >0

N
u* ) = Maz (0,4 +4( Y x(®) - @)
i=1;a;,=1
(111.15)
Where the functions {x;} are defined as in the previous sub-
section and p©@ € R,.L.

The following lemma shows that the gradient of the dual func-
tion, d, is Lipschitz. Proposition III.6 gives a condition on the
stepsize, -, so that the algorithm converges to U.

Lemma HI.2: Vd is Lipschitz on RY. Let K, be the Lips-
chitz constant. Let for each i € {1, ..., N}, N (i) be the number
of links crossed by user . Then:

N
Kz =VL()_(PR; = MR:)’ N(i))

i=1

Proposition I11.6: Let {(*¥)} a sequence generated by II1.15
such that p(® € R L and v €]0, 7%;[ Then:

u® 2T as k= oo
Proof

Let v €]0, [ dis C* over the closed and convex set

Jim d(A(tn)) = d(p), VEEU R.L. The gradient of d is K»-Lipschitz. Hence via (17,
0-7803-5880-5/00/$10.00 (c) 2000 [EEE 1515 IEEE INFOCOM 2000



Prop. 2.3.2, Chap. 2}, every limit point of {u(*)} is an ele-
ment of U. We now show that the sequence {1(¥)} is bounded.
Since, d is concave on RY, R.” is a convex and closed set,
and U nonempty and bounded the following set is compact:
{n € RE) = d(p) € ~d(u®)} (see [17, Appendix B, Prop.
B.9]). Using the descent Lemma the projection characterization
one can show that for each k > 0

—d(u*D) < —d(u®)

Hence, {1} is bounded. Since the set of its limit points is
included in U, the result of the proposition follows. |

Remark I11.4: A stepsize in the interval ]0, £-[ guarantees
an increase of the dual function, d, at each iteration.

Let 7 be the Nash arbitrated allocation vector (solution of
(S)). Let for every k > 0, z(*) be equal to x(u*)) where
the sequence {u(")} is generated by algorithm A2. Then the
following holds,

Proposition 111.7:
lim z*) = z
k—o0
Proof
It is very similar to the proof of proposition ITL5. n

Algorithms Al and A2 suggest synchronous distributed im-
plementations in which network nodes are synchronized (by it-
eration) and exchange information with users (connections). In-
deed, iterations of type IIL.5 or ITI.15 can be run at each network
node using local information (y; for link /) and information sent
by relevant users. A user updates its local variable (z; for user i)
using information received from the links this user crosses (see
II1.3). After each update a user sends the new value to these
links.

IV. RATE-BASED CONTROL SCHEMES

We have proposed and studied two algorithms, A1 and A2,
in order to solve the global optimization problem characteriz-
ing the Nash arbitrated allocation. These algorithms lend them-
selves to a distributed implementation in which network nodes
and connections (or sources) play an active role. We propose
two rate-based control schemes using explicit-rate-type notifi-
cation ([12]) and motivated by the two optimization algorithms
mentioned above.

The goal of the two rate-based control mechanisms is to allo-
cate the available bandwidths inside the network between active
elastic connections according to the fair criterion, the Nash ar-
bitration scheme.

We first describe the rate control scheme based on algorithm
A2, the other one being quite similar. We assume that elastic
sources send regularily forward Resource Management (RM)
packets in order to get feedback from the network about the
congestion state or resource availability. In the context of the
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ATM ABR capacity transfer, a source sends an RM cell before
a certain fixed number of data cells.

The information necessary for the operation of the control
scheme is conveyed by the RM packets which are of two kinds;
forward RM packets which are created by sources and conveyed
along their corresponding paths and backward ones which are
created by destinations that turn around the forward RM pack-
ets. The fields of an RM packet (figure 1) relevant to the de-
scription of the control scheme are “DIR” (direction: forward
or backward), “MR” (connection minimum rate), “PR” (con-
nection peak rate), “CP” (congestion price), and “ER” (explicit
rate). “CP” is used by network nodes to communicate the value
of the price variables (termed p; for link ! previously) they con-
trol. “ER” stands for the maximal rate at which a given connec-
tion can transmit data.

DIR MR PR ER cp

Fig. 1. An RM packet structure

There is a set of parameters associated with the control
scheme: a constant stepsize, 7, used to update the price vari-
ables, some feedback intervals, FI, and some measurement in-
tervals, MI. Each network link has its own feedback interval and
measurement interval. A link price is updated at the beginning
of each feedback interval and the total link input rate is mea-
sured during the measurement interval, figure 2.

FI 3 34
Ml MI MI
L - —
time
L L
price price
update update

Fig. 2. A link updating and measuring process

The local procedures run by network nodes are based on the
iterative algorithm A2. Indeed, if we interpret x;(u*) as the
current data rate of connection ¢ which is a function of the cur-
rent network link price vector then in equation (II.15) the sum
S 1 anet X:i(u®) can be interpreted as the current total in-
put rate at link {. It is important to note that the new price for
a link ! is computed when the information about current total
input rate (the above sum) is available at the link. This helps
to determine the right values for the feedback and measurement
intervals associated with network links.

Now in the follwoing we describe the local procedures asso-
ciated with the control scheme.

A source procedure:

« A source sends regularily a forward RM packet, and puts
the minimum rate and the peak rate in the corresponding fields.
Then, it sends the packet to the destination.
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» At the reception of a backward RM packet a source adjusts
its transmission data rate according to the explicit rate notifica-
tion (ER) contained in the RM packet. This is done as follows:
we consider that a source has a variable called “Allowed Rate”
which is updated as follows: AR 4+ ER. AR is the maximal rate
at which a source is allowed to transmit.

A destination procedure:

« At the reception of a forward RM packet, a destination cre-
ates a backward RM packet, puts zero in the “Congestion Price”
field, and sends it back to its corresponding elastic source.

A network node procedure: For a particular output link

« At the beginning of each feedback interval (figure 2) the
node updates the link price using the input rate measured during
the previous measurement interval, Input, a constant stepsize,
Gamma, and the link available capacity, C. The following illus-
trates the price updating:

price ;= Max (0, price + Gamma (Input - C))

» At the reception of a backward RM packet, ER and CP are
modifed using the current link price, the minimum rate (MR),
and the peak rate (PR). The modifications are done as follows
(ER is modified using the new value of CP):

CP :=price + CP

PR if CP< ppiwm

PRe={ oy gy if OB 5 DT

Once the modifications are completed the backward RM packet
is relayed back to the source.

« A node measures regularily (figure 2) the total input rate at
the link.

One can notice that the explicit rate (ER) contained in a back-
ward RM packet does not increase when going through network
nodes in the backward direction. In addition, the implementa-
tion of the rate control scheme does not differentiate between
network access nodes and the other nodes as far as the update of
ER is concerned.

For the good operation of the control scheme it is important
to dimension for each link the feedback and measurement in-
tervals. Indeed, FI should be large enough in order to allow
the sources traversing a particular link to react to the new price
(after update) conveyed by the backward RM packets and for a
link to experience the result of sources reaction. The total input
rate at a link should be measured during that period i.c when the
response of sources to the new price has reached the link.

The second rate-based control scheme we propose differs
only in the way the price variable (price) is updated. Indeed,
for a link I it is updated using two constants, Alpha and g, and
according to the following (equation IIL.4):

price := price + Alpha (Input - wi(price))
V. CONCLUDING REMARKS

Many issues concerning the good operation of the two rate
control schemes have not been addressed in this paper. One
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of them is adaptivity which is basically the convergence of the
control algorithm after a short transient period to the point at
which sources get their Nash arbitrated share. One way is to
use variable step sizes. A second issue is the issue of using
network measurements, which introduce randomness for which
stochastic stability will need to be studied. Robustness issues
have also not been discussed which will be addressed in future
work.
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