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ABSTRACT
It is anticipated that energy storage will be incorporated into
the distribution network component of the future smart grid
to allow desirable features such as distributed generation in-
tegration and reduction in the peak demand. There is, there-
fore, an urgent need to understand the impact of storage on
distribution system planning. In this paper, we focus on the
effect of storage on the loading of neighbourhood pole-top
transformers. We apply a probabilistic sizing technique orig-
inally developed for sizing buffers and communication links
in telecommunications networks to jointly size storage and
transformers in the distribution network. This allows us to
compute the potential gains from transformer upgrade de-
ferral due to the addition of storage. We validate our results
through numerical simulation using measurements of home
load in a testbed of 20 homes and demonstrate that our
guidelines allow local distribution companies to defer trans-
former upgrades without reducing reliability.

1. INTRODUCTION
It is widely believed that the future electrical grid will have

significant amount of storage. Storage may be added at one
of several locations: it may be installed near generators to
even out variations in generation, in the transmission net-
work to even out peak transmission loads, or at substations
and feeders in distribution networks to absorb variations in
electrical demand (also referred to as load) [2]. In this pa-
per, we study effect of storage on sizing a neighbourhood
pole-top transformer.

Customer electrical demand typically exhibits diurnal and
seasonal variations. In this situation, if a pole-top trans-
former is sized to meet only the long-term average demand,
there will inevitably be periods when it will be overloaded.
An overloaded transformer may overheat, have a shorter life
expectancy, and is more likely to fail [1]. Therefore, utili-
ties size transformers for the peak customer demand; this
increases the size and the cost of a transformer. However, it
is not economical to size a transformer for a peak that may
occur only once every ten years.

The dilemma of choosing between transformer overload
and underutilization can be resolved by introducing stor-
age adjacent to the transformer. A store that fills up when
customer demand is low and partially fulfils demand during
periods of heavy demand ensures that, even if the trans-
former is sized for a demand smaller than the peak, it never
exceeds its nameplate rating1. Of course, this requires guide-

1The nameplate rating of a transformer is the maximum

lines to determine the amount of storage that corresponds
to a given average and peak customer demand. This is one
primary focus of our work.

Storage can also help with transformer upgrade deferral.
As customer demands grow over time, both the average and
peak demands increase. To meet network reliability stan-
dards, local distribution companies (LDCs) must upgrade
their infrastructure to meet these increasing demands. This
usually requires upgrading pole-top transformers to higher
nameplate ratings. However, upgrading a transformer can be
costly. Instead, LDCs could leave transformers unchanged
and partly serve load using storage. This requires guidelines
to determine the amount of storage that would offset a given
increase in customer demand, and is a secondary focus of our
work.

Distribution transformers are typically sized by electric
utilities using an approach similar to that described in Ref-
erence [14]. However, utilities lack guidelines for joint sizing
of distribution transformers and storage. The novelty of our
work is, therefore, to apply probabilistic sizing techniques
developed for sizing buffers and links in communication net-
works to jointly size storage and transformers in the dis-
tribution network based on the analogy between a commu-
nication access network and a power distribution network
(shown in [5]).

We make three specific contributions:

• We present a theoretical foundation for jointly sizing
pole-top transformers and storage based on methods
developed for sizing buffers in telecommunication sys-
tems.
• We demonstrate how to map electricity demand to the

standard dual leaky-bucket parameters.
• We present a joint sizing guideline for transformers

and storage in a residential neighbourhood and show
the impact of the aggregate load parameters on this
guideline.

Given the dropping costs of storage and its substantial
benefit, we believe that it is important to develop guidelines
to jointly size pole-top transformers and storage. We believe
that this relatively simple framework will be useful to electric
utilities to compare different options especially since it is
based on a conservative set of assumptions that are in line
with today’s ways of dimensioning residential transformers.

power output that a transformer can continuously deliver
at rated voltage and frequency without exceeding a speci-
fied temperature. At this temperature a transformer has its
normal lifetime.
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Figure 1: A branch of the electrical grid with the
aggregate residential load, LA, where the capacity of
storage is B Watt-hours and the nameplate rating of
the transformer is S Volt Amperes. This system is
modelled as a fluid queue.

2. BACKGROUND AND ASSUMPTIONS

2.1 Assumptions
A branch of a residential distribution network is shown

in Figure 1. It consists of a pole-top transformer with a
nameplate rating of S kVA supplying residential demands
of n homes, the sum of whose demands creates an active
aggregate time-varying load of LA(t) kW. We assume that
all homes are located in a small geographical area so that
distribution losses can be neglected. We also assume that
generation can always meet the aggregate demand so that
it is not a bottlenecked resource.

Let C denote the active power that can be supplied by
the transformer. Note that C = Sf where f is the power
factor computed for the aggregate load at the transformer.
For simplicity, we assume that the power factor is fixed and
known a priori.

The system contains storage that is characterized by two
parameters: its capacity, B Wh, and its charge/discharge
rating, i.e., the maximum power at which it can be charged
or discharged. Storage is connected in shunt to the distribu-
tion feeder through a power control system, denoted by PCS.
We assume that storage can be fully charged or discharged
and that the charge/discharge process is 100% efficient.

A typical PCS consists of an inverter, a transformer, and a
charge controller which controls the charging and discharg-
ing of the storage device. Specifically, it charges storage at
the rate C − LA(t) until the storage becomes full whenever
the aggregate customer demand is less than the power sup-
plied by a transformer that is loaded at its nameplate rat-
ing2. Symmetrically, it discharges storage at rate LA(t)−C
until the storage becomes empty whenever the aggregate
demand is greater than the power supplied by the trans-
former that is loaded at its nameplate rating. We assume
that the charge/discharge rating of storage is greater than
both C −min{LA(t)} and max{LA(t)} − C.

Whenever storage is depleted and the aggregate customer
demand is greater than the power supplied by the trans-
former loaded at its nameplate rating, the transformer is
overloaded, which impacts its lifetime and may even result
in an outage. Therefore, a loss of load might happen when-

2Since our goal is to maximize the utilization of distribution
assets, we assume that PCS charges the store at a rate that
requires loading the transformer at its nameplate capacity.
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Figure 2: A fluid queue serves traffic generated at
the rate of LA bits/second. The capacity of the buffer
is B bits and the service rate of the server is C
bits/second.

ever storage is depleted and the aggregate demand exceeds
C. We assume, conservatively, that a loss of load will happen
whenever these two conditions are met.

Grid reliability is typically expressed in terms of the loss-
of-load probability (LOLP) [13]. The “one-day-in-ten-years”
reliability criterion (LOLP = 2.74 × 10−4) is a widely used
benchmark. To comply with this reliability criterion, the
transformer and storage should be sized such that the loss of
load event (i.e., the storage underflow event) occurs less than
one-day-in-ten-years. Thus, our plan of attack is to compute
the storage underflow probability or to find an upper bound
on it for a given transformer and storage sizing and make
sure that it is less than LOLP. This upper bound depends on
how we model the aggregate load as discussed in Section 4.

2.2 The Equivalence Theorem
We apply probabilistic sizing methods developed for di-

mensioning buffers and links in the context of Internet to
jointly size transformers and storage. This is possible be-
cause of the Equivalence Theorem (proved in [5]) which
demonstrates that a residential distribution network can be
accurately modelled as a simple telecommunication network
called a fluid queue. In a fluid queue, telecommunication
sources generate infinitesimal packets that are served by a
telecommunication link associated with a buffer. The equiv-
alence theorem indicates that this model can also be used
to study a distribution network where electrical sinks con-
sume infinitesimal units of energy (i.e. electrons) supplied
by a distribution network with a given peak capacity C and
associated storage.

The Equivalence Theorem motivates us to model the dis-
tribution network described by a transformer with name-
plate rating, C = Sf kW, a store of capacity B Wh, and an
aggregate time-varying demand LA(t) kW as a fluid queue
with a link of capacity C bits/second, a buffer of size B
bits, and an aggregate time-varying source rate of LA(t)
bits/second. Given this model, we are interested in comput-
ing the set of B,C pairs corresponding to a desired buffer
overflow probability. The direct consequence of the Equiv-
alence Theorem is that the loss of load probability in the
distribution network can be approximated by the overflow
probability in the dual fluid queue (Figure 2). This is impor-
tant because the problem of upper bounding the loss prob-
ability in a fluid queue (in contrast to the upper bounding
an underflow probability) is well-understood [7,8, 10,15].

To sum up, in the remainder of the paper we study a
simple fluid queueing system. An (infinitesimal) arrival in
this system brings LA(t) traffic to the system at time t and
the service rate is C. Our goal is to find an upper bound on
the buffer overflow probability of this system. A pair (B,C)
is said feasible if this upper bound is less than 2.74× 10−4.



3. FLUID ANALYSIS
We first present a brief tutorial on the fluid queueing

model and then overview the existing upper bound on the
stationary probability that the backlog grows beyond a cer-
tain level.

3.1 A Fluid Queueing Model
A fluid queueing system is a type of queueing system

where an arrival event could occur at any t ∈ R+, and the
amount of work brought to the queue by an arrival is con-
tinuous.
Definition 1. The cumulative input to a queueing system
in any interval I, denoted by the function A(I), is defined
as the total traffic (also called work) that has arrived to the
system in I.
Definition 2. The cumulative output from a queueing sys-
tem in any interval I, denoted by the function D(I), is de-
fined as the total traffic that has departed from the system
in I.
Observe that both A and D are continuous, monotonically
increasing functions, and A(I) ≥ D(I) in any interval I if the
buffer is empty at the beginning of this interval. We assume
that both A and D are stationary stochastic processes 3. The
stationarity assumption permits us to extend the domains
of A and D as A(s, t] and D(s, t] in −∞ < s ≤ t.

From the above definitions, it is clear that the backlog of
a system at time t (i.e., the amount of work that is in the
system at t and is denoted byQ(t)) is equal to A(s, t]−D(s, t]
if no work was in the system at time s (s < t). We say that
an interval I is a backlogged interval iff for all t ∈ I we have
Q(t) > 0. The server is never idle in a backlogged interval.
The following corollary is well-known:

As the difference of two stationary processes, Q is also a
stationary process. We can therefore extend the domain of
Q to the whole real line. Following convention, the station-
ary backlog process is denoted by Q(0). Therefore, our goal
reduces to finding P(Q(0) = B) in a finite capacity queueing
system. This corresponds to the buffer overflow probability
as Q(t) cannot grow beyond the buffer size B.

Computing the loss probability in a finite buffer system
is quite difficult. A common practice is to approximate the
loss probability in a system with a buffer of size B with
the probability of up-crossing the level B in a system with
an infinite buffer [17] (as long as the infinite buffer queue is
stable, that is, the long-term arrival rate does not exceed the
link capacity C). We use this approach in this paper since
this condition holds. Our revised goal, therefore, is to find
P(Q(0) ≥ B) in an infinite capacity queueing system.

3.2 An upper bound on P(Q(0) ≥ B)

The upper bound on the probability that the backlog in a
stationary infinite buffer grows beyond level B was derived
by Kesidis and Konstantopoulos [10] for a work-conserving
queueing system that has a constant service rate, C, and
a deterministically shaped arrival process. We present this
bound next.

Definition 3. Suppose A(I) is a cumulative input func-
tion as defined in Section 3.1. We say that A is α-smooth or
equivalently α is an arrival curve if, for any finite interval,

3In fact A is not stationary due to time of day dependency.
However, our analysis applies eventually to the peak day of
year or busy hours modelled as a stationary process.
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Figure 3: Arrival and service curves.

I, we have A(I) ≤ α(|I|) where |I| is the length of interval I.

In the following, we will consider a (π, ρ, σ) arrival curve
defined as g(t) := min{σ + ρt, πt} with ρ < π. This means
that we upper bound the arrival process by a determinis-
tically shaped process characterized by the three parame-
ters (π, ρ, σ). Note that this is a standard dual leaky-bucket
model [9].

Definition 4. Suppose D(I) is a cumulative output func-
tion as defined in Section 3.1. We say that the system offers a
service curve β to a flow if for any finite backlogged interval I
the output of the queue is at least β(|I|), i.e., D(I) ≥ β(|I|).

Thus, an upper bound on the backlog is given by [11]:

Q(t) ≤ sup
s≤t
{α(s)− β(s)} (1)

As can be seen in Figure 3, this is the maximum vertical
distance between α and β.

Now, consider the case where the cumulative input func-
tion to an infinite queueing system is constrained by g(t) and
the server offers a constant service rate C where ρ < C < π.
Kesidis and Konstantopoulos [10] derived an upper bound
for the stationary probability that the buffer level exceeds

B under the assumption (π−C)σ
(π−ρ) ≥ B:

P(Q(0) ≥ B) ≤
σ − π−ρ

π−CB
C
ρ
σ −B

(2)

This bound allows the sizing and provisioning of links and
buffers so that the quality of service requirement is guar-
anteed, i.e., the loss probability is less than a threshold ε
= LOLP. This is because the minimum link bandwidth C
(measured in bits per second) is a function of the buffer size
B (measured in bits) for a given quality of service require-
ment ε.

4. METHODOLOGY FOR JOINT SIZING
OF STORAGE AND TRANSFORMER

We now show how utilities can use the bound in (2) to
compute transformer sizing and storage capacity while meet-
ing network reliability requirements. Recall that we approx-
imate the storage underflow probability in the grid (which
we interpret as the probability of a failure in the grid) by the
stationary buffer overflow probability in the dual queueing
system. Thus, the bound in (2) is simply the LOLP, allowing



us to rewrite (2) as follows:

B ≥
σ(1− LOLP Sf

ρ
)

π−ρ
π−Sf − LOLP

(3)

This allows us to jointly size the transformer nameplate rat-
ing S = C/f and the storage size B (for B 6= 0).

Note that the joint sizing depends on choice of π, ρ, and
σ, which are chosen by the utility to properly model the ag-
gregate customer demand LA(t) and a significant contribu-
tion of our work is in the careful choice of these parameters.
Given a neighborhood characterized by its aggregate load
demand LA(t), a utility has to estimate the three parame-
ters π, σ, and ρ so that LA(t) ≤ min{σ + ρt, πt} for all t.
In a telecommunication network, π is the peak traffic rate,
ρ is a bound on the long term average traffic rate, and σ is
the maximum burst tolerance which is defined as the buffer
size required for a loss-free transmission when the link rate
is ρ. This gives us the following insight into choosing these
parameters in the context of the distribution grid.

Let S(B) be the minimum value of S for which inequality
(3) is satisfied for the target LOLP. Note that utilities al-
ready have guidelines to size residential transformers when
there is no storage, i.e., they have guidelines to compute
S(0). Therefore, we suggest that a reasonable value for π is
π = S(0)f because S(0) has been selected to ensure that the
target LOLP is met in the peak day of year4 when there is
no storage.

We define ρ as the long-term mean demand; i.e., the mean
demand over a time duration which is long enough to cap-
ture diurnal and seasonal variations in aggregate customer
demand. Utilities that already instrument their distribution
network to obtain long-term measurements can use these
measurements to directly compute ρ.

In cases where such long-term measurements are not avail-
able, a practical alternative would be to estimate ρ as the
average customer demand during either the peak day, the
peak week, or the peak month of year because each of these
estimators is a strict upper bound on the long-term mean
demand.

The parameter σ is defined as the storage capacity re-
quired so that a transformer with the nameplate rating of
ρ/f (i.e. the long-term average demand) is not overloaded.
We propose two different approaches for computing σ. The
first approach is based on a numerical simulation of the
charge level of storage for different storage capacities given
the measured aggregate load profile on the peak day of year
to determine whether the transformer is loaded higher than
its nameplate rating, ρ/f . We set σ to be the minimum stor-
age capacity that results in no overloading. We use the load
profile of the peak day because if the storage capacity is
enough to prevent the transformer overloading in the peak
day it would be enough to prevent the transformer overload-
ing in any other day.

The second approach upper bounds σ by (π − ρ)T where
T is defined as the sum of the length of time periods in
the peak day of year in which the aggregate load is greater
than ρ. This approach is more conservative than the first
approach and results in a larger storage size.

The choices of ρ and σ are not independent. A utility that

4The peak day is either in summer or in winter depending
on the geographical region. We assume that utilities have
accurate estimates for the load profile of the peak day.

chooses ρ conservatively can use a less conservative choice
of σ because the closer the estimated long-term demand is
to the estimated peak-demand, the less the variability in the
model of the aggregate customer demand.

The approach described above can be used for transformer
upgrade deferral as follows. Suppose that the LDC can esti-
mate the future value of π, ρ, and σ by analyzing historical
trends in these values. This allows the LDC to compute the
B required meet the LOLP when S is fixed. This is precisely
the amount of storage required to accommodate increases in
customer demand without changing the transformer, as re-
quired.

We end this section with two technical notes. First, the
careful reader will note that we have modelled a power trans-
former as a server with a constant service rate, C = Sf .
However, a power transformer might be loaded higher than
its nameplate rating for a limited time, for example, dur-
ing a demand peak period. Therefore, it is more accurate
to model the power transformer as a server which offers a
service curve β(t) = Ct (i.e., the service rate can be greater
than C). We prove in Appendix A of the extended version
of this paper (Reference [6]) that even with this model the
stationary overflow probability of the fluid queue with the
same deterministically shaped arrival curve is bounded by
the same expression derived for a system with a constant
service rate. Second, the bound in (3) does not hold when
B = 0. In Appendix B of [6], we show that B goes to 0 when
S(B) goes to π/f , so that (3) is indeed continuous at this
limit.

5. RESULTS
We now validate the joint sizing guidelines proposed in

Section 4. In practice, LDCs can estimate the three pa-
rameters (π, ρ, σ) using their existing measurements and by
following the prescribed methodology. However, we do not
have access to LDC meter readings and field data. To miti-
gate this to some extent, we deployed our own measurement
nodes in a residential neighborhood consisting of 19 houses
and one home-based small business as described in [4]. Each
measurement node consists of a Current Cost Envi device [3]
and a netbook. The Envi device measures the active power
consumption (in Watts) of a house every six seconds and
stores it locally in flash memory. A script on the netbook
queries the device every six seconds to obtain an XML file
that it stores on disk. This is uploaded using a secure con-
nection to a server in our laboratory once a day.

A guideline provided by a utility in our region classifies
homes into a number of different classes based on a few sim-
ple parameters including the living area size and the nature
of the heating and cooling systems, which constitute the
major loads in our geographical area. These parameters are
used to compute a ‘unit value’ that represents the load ex-
pected from that home. The guideline maps the total unit
value of a neighbourhood to a transformer size when there
is no storage, i.e., it gives S(0).

We asked the participants of our study to tell us their
home’s unit value. We used this to compute the total unit
value of this neighborhood. The transformer size that is rec-
ommended by the guideline for this neighborhood is thus
compted as 100 kVA. Therefore, assuming that the power
factor corresponding to the aggregate residential load is equal
to f=0.95, we set the value of π to 95 kW.

Furthermore, based on our measurements over a period



of six months including the peak month, peak week, and
peak day of year, we compute the three estimators of the
sustained mean load; these are 25.5 kW, 30.6 kW, and 34.9
kW respectively. Then, using the two approaches for com-
puting σ introduced in the previous section, we obtain six
different (ρ,σ) pairs. These allow us to compute the set of
B and corresponding S values that meet the LOLP; we call
this a trade-off curve. Each point on each trade-off curve
corresponds to a (S,B) pair computed by substituting π, ρ,
and σ in (3).

Figure 4 illustrates the impact of the aggregate load pa-
rameters on the trade-off curves. As expected, the second
approach to compute an upper bound on σ results in more
conservative trade-off curves (that is, higher values of B for
a given value of C). Moreover, it turns out that the farther
the estimated ρ is from the actual sustained mean load the
lower the trade-off curve.

Recall that our sizing guidelines assume that the aggre-
gate customer demand is stationary. In practice, the aggre-
gate demand has distinct diurnal and seasonal variations
and therefore is far from stationary. We therefore perform
numerical simulation to validate the degree to which the
(S,B) pairs obtained from a trade-off curve are admissi-
ble, that is, they satisfy the reliability criterion of the grid
(LOLP = 2.74 × 10−4). This numerical simulation uses the
sum of the loads of the 20 homes measured over the period of
six months to compute the transformer overloading duration
for every (S,B) pair.

Our simulations show that the transformer overloading
duration is zero for all (S,B) pairs except in two cases. The
first case corresponds to (S,B) pairs when S is less than
32 kVA, ρ is estimated by the average demand of the peak
month, and σ is computed using the first approach. The
second case corresponds to (S,B) pairs when S is less than
35 kVA, ρ is estimated by the average demand of the peak
week, and σ is also computed using the first approach. In
both cases, the grid reliability criterion may be violated if
overloading of the transformer leads to the loss of load. This
suggests that we should compute σ using the second ap-
proach especially when the transformer is sized for a value
that is very close to the long-term mean load. When using
this latter approach, despite the assumptions made in our
work, the sizing guidelines result in no loss of reliability.

6. RELATED WORK
The lines of work closest to ours are by Le Boudec et

al. [12] and Wang et al. [16]. In [12] min-plus system theory
is used to size the battery, and schedule its operation such
that it can be guaranteed that the inflexible load is always
satisfied. In [16] network calculus concepts are used to jointly
size storage, solar photovoltaic panels, and wind turbines for
a specific loss of power supply probability when intermittent
renewable generation is supplemented with energy storage.
However, both of these papers are different from ours as they
do not consider transformer capacity limitations.

7. CONCLUSION
The introduction of storage into the distribution grid cre-

ates the challenge of jointly sizing pole-top transformers and
their associated storage. We propose a novel approach to this
problem drawing on an analogy to sizing telecommunication
networks. We present trade-off curves obtained for a neigh-
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Figure 4: Trade-off curves. The lower three curves
are obtained using the first approach for choosing σ
and the rest are obtained using the second approach.

borhood in which we deployed measurement nodes which
measure the active power consumption and showed, using
numerical simulations, that, despite the many assumptions
of our work, with the appropriate choice of load parameters,
our guidelines do not result in the loss of network reliability.
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