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Preface

Variable-power distributed energy resources, such as solar photovoltaic and
storage systems, and high-power elastic loads, such as electric vehicle chargers,
are being installed at a phenomenal rate in power distribution systems. Such
active end-nodes can affect the reliable operation of the grid if they are not
controlled properly. Yet there is no consensus among various stakeholders in
the power industry on the significance and impacts of these cutting-edge tech-
nologies. This brief focuses on the challenges of integrating active end-nodes
into low-voltage distribution grids and the potential for pervasive measure-
ment and control to address these challenges. A mathematical framework is
presented for the joint control of active end-nodes at scale, and it is shown
through extensive numerical simulations that proper control of active end-
nodes can significantly enhance reliable and economical operation of the
power grid.
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Chapter 1
Introduction

Abstract Large-scale integration of variable-power distributed energy re-
sources (DER), such as solar photovoltaics and storage systems, and high-
power elastic loads, such as electric vehicle chargers, into low-voltage dis-
tribution grids can pose serious challenges to power system operators. This
chapter discusses how pervasive measurement and control can be used to
address these challenges and enhance the reliable and economical operation
of the grid. It also specifies design goals for future grid control mechanisms,
and proposes a new approach to the control of DER and elastic loads.

1.1 Traditional Grid

The North American power grid is one of the largest machines ever built.
This gigantic, carbon-intensive legacy system comprises thousands of power
stations producing electricity to serve demands of millions of geographically
dispersed electrical loads, and has an enormous number of transmission and
distribution lines and transformers connecting the power stations to distribu-
tion substations and downstream loads. Despite the scale and complexity of
the power grid, its fundamental task is surprisingly simple: it delivers power
to loads while ensuring reliability1 and low cost. From the early days of the
grid, reliability has always been of utmost importance and this perspective has
been reflected in its planning and operation. In particular, electric utilities size
and operate the grid in a way that the available generation capacity almost
always2 exceeds demand peaks and the transmission and distribution capacity
is almost always sufficient to deliver power to the loads. The success of this

1 Power system reliability generally describes the continuity of electric service to customers
with a voltage and a frequency within prescribed ranges.
2 A widely accepted benchmark value for reliability in the United States is the “one-day-in-
ten-years criterion”, which means that the system-wide generation capacity is expected to
fall short of demand once every ten years [21].
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2 1 Introduction

approach is reflected in the fact that today customers in many parts of the
world take it for granted that lights turn on as they flip a switch. They do not
even notice that power system operators are taking measures to constantly
and precisely balance supply and demand.

The traditional power grid has the following characteristics that are relevant
to the discussion of distribution grid control, the focus of this chapter:

• Generation – Power stations are typically centralized and dispatchable,
i.e., their power output can be adjusted at the request of system operators,
though some are more responsive than others. In many countries, most
power stations burn fossil fuels to produce electricity, contributing to
carbon emissions. Power stations are interconnected by high voltage trans-
mission lines forming a mesh network with many redundant pathways.
Hence, there is a clear physical and structural separation between gener-
ation resources and loads, which are typically connected to distribution
feeders.

• Loads – Residential and commercial loads are mostly inelastic, i.e., their
demand cannot be controlled or shaped. Although it is difficult to accu-
rately predict the demand of a single load at a given time, the aggregate
demand of a large number of loads across the grid behaves in a rela-
tively predictable manner. This enables the system operators to schedule
generation units a day or an hour in advance.

• Customers – In the traditional power grid, customers are information
poor, control poor, yet energy rich. That is, they do not receive real-
time electricity price or other signals that indicate the state of the power
system, they have no means to control or schedule their loads, yet they
are permitted to consume electricity at will as long as their demand is
lower than a limit enforced by a circuit breaker.

• Storage – Physical energy storage is expensive and scarce. Thus, electricity
must be produced and consumed instantaneously3.

• Distribution networks – Unlike transmission networks, legacy distri-
bution networks are equipped with little instrumentation beyond the
substation for cost reasons. Hence, distribution system operators (DSOs)
have no way of determining the state of the network and cannot initiate
remote remedial actions. Even the location of an outage in the distribution
network is often determined by customer calls, unless it affects a manned
substation [21]. Given that the grid is over-provisioned by design and tra-
ditional distribution networks are mostly radial with unidirectional power
flow, service reliability is not at risk, despite having poorly monitored and
controlled circuits.

3 A small amount of energy storage in the form of rotational inertia is implicit in the
traditional grid. This helps the operators to balance load and generation within a short time
scale.
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The consequence of these characteristics is that uncertainties are mini-
mal and manageable in traditional power systems. This is because most
generation units are dispatchable, and the overall demand does not
vary drastically over a short period of time and can be predicted with
sufficient accuracy several hours in advance.

However, the century-old grid is extremely under-utilized and ineffi-
cient; it is sized to meet the peak demand, which tends to occur only a
few hours a year. This design principle is essential to preserve reliability
when demand elasticity and storage capacity are very limited, but leads
to a large carbon footprint.

1.2 Drivers of Change

In recent years, the traditional grid has undergone substantial changes due to
the integration of several demand-side technologies into low-voltage distri-
bution networks. This section introduces these low-carbon technologies and
their potential impact on the grid, highlighting the growing need for control
in distribution systems. A more comprehensive impact study is presented in
Chapter 2. Our focus is restricted to the three most important technologies in
distribution systems, namely renewable energy systems such as solar photo-
voltaics (PV) and wind turbines, electric vehicles (EVs)4, and battery storage
systems.

1.2.1 Renewable Energy Systems

Renewable generation costs have declined substantially in many parts of the
world mainly due to sustained technology progress and improved financing
conditions. For example, solar power has reached grid parity5 in several
jurisdictions today and is expected to soon become competitive with retail
electricity in many other jurisdictions, even if existing investment tax credits
expire [9]. This has led to increased deployment of rooftop solar panels in
residential and commercial sectors, making solar PV distributed generation
one of the fastest-growing renewable generation technologies at the present
time.

4 This work focuses on plug-in electric vehicles (PEVs), which are a subset of EVs that can be
charged from the grid. But, for convenience, these two terms are often used interchangeably.
5 Grid parity occurs when the levelized cost of solar PV (over a 20 to 25 year horizon)
becomes less than or equal to the retail electricity price.
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Unfortunately, a high concentration of inherently-variable solar generation
(and other types of renewable generation) in distribution networks is a mixed
blessing. First, increased uncertainty in generation capacity both complicates
generation planning [23] and increases the need for frequency regulation
by fast-ramping fossil fuel power plants, which can actually increase overall
carbon emissions6. Second, solar PV generation can surpass the feeder loading
in some periods, resulting in reverse power flow and voltage rise toward the
end of the feeder [15]. Reverse flows can cause protection coordination
problems and the overuse of voltage regulating devices and circuit breakers,
shortening their expected life cycle. Third, curtailing inexpensive solar power,
i.e., accepting less solar power than what is available and displacing it by
higher-priced resources, might be necessary to avoid distribution network
problems in some situations [18]. However, in many jurisdictions, electric
utilities need to pay for solar generation even if it is curtailed. This leads to
the paradox of a large installed base of solar generation with small actual
usage of solar power, yet with higher electricity bills for all.

Growing concerns over the impacts of distributed renewable generation on
power system planning and operation have led to the design of sophisticated
inverters that are capable of on-demand curtailment of real power and reactive
power adjustment in addition to their basic task of converting direct current
output of renewable energy systems to alternating current [16]. These smart
inverters can be controlled to tackle overvoltage and unbalance conditions and
prevent reverse flow [12, 27, 32]. Hence, a measurement, communication,
and control infrastructure is essential for taking full advantage of the smart
inverters.

1.2.2 Electric Vehicles

The transportation sector is by far the largest consumer of petroleum, and
the second largest contributor to global greenhouse gas (GHG) emissions,
accounting for about 23% of the global GHG emissions in 2012 [14]. Trans-
portation electrification could alleviate growing concerns over climate change
and petroleum scarcity. Therefore, many governments have issued mandates
to incentivize the adoption of electric vehicles so as to reduce their reliance
on petroleum and cut down GHG emissions.

The EV market is growing fast. Global EV stock exceeded 665,000 in 2014,
which is about 0.08% of the total passenger car stock at present [10], and it
is anticipated that EVs will account for 64% of U.S. light-vehicle sales and will
comprise 24% of the U.S. light-vehicle fleet by 2030 [4]. Several automakers,
including Nissan, Chevrolet, Toyota, General Motors, Ford, Honda, Audi, BMW,

6 Germany has already encountered this problem, known as the Energiewende paradox [11].
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Renault, BYD, and Tesla, have embraced this technological shift and have
released all-electric and plug-in hybrid EV models for the mass-market.

However, widespread EV adoption poses several new challenges for electric
utilities and distribution system operators. At moderate to high penetration
levels, uncontrolled electric vehicle charging can increase the peak load and en-
ergy losses, overload or congest distribution lines and transformers, and cause
voltage swings and phase imbalance in the distribution system [7, 20, 26].
Unrelieved congestion can overheat transformer windings and accelerate
degradation of line and transformer insulation, leading to premature equip-
ment failure. Excessive voltage drop can cause damage to electrical appliances.

Even at low penetration levels, there are likely to be certain neighbourhoods
with high penetration levels [8]. For instance, the state of California’s share of
total nationwide plug-in EV registrations reached 45% in 2014, accounting for
129,470 units out of the 286,842 PEVs registered in the U.S. since 2010 [5].
Uncoordinated EV charging could have detrimental impacts on the distribution
network in these eco-friendly and eco-trendy neighbourhoods, even if the EV
penetration level is relatively low in the entire distribution network.

To accommodate the EV charging load, utilities can take either of two
approaches. The first approach is to make the required investment to upgrade
distribution circuits as they become overloaded. The second approach is to
exploit the elasticity of the EV charging load and a broadband communication
network overlaid on the distribution network to directly control smart EV
chargers7. The second approach significantly reduces the required reinforce-
ment investment to accommodate higher EV penetration levels [25], assuming
that the required measurement, communication, and control infrastructure is
already in place.

1.2.3 Battery Storage Systems

With the growing interest in battery storage systems, especially when paired
with solar PV installations, and the announcement of Tesla’s Gigafactory,
the world’s largest lithium-ion battery factory, the cost per kilowatt-hour of
battery storage systems is expected to fall dramatically by 2020 [30]8. This
will increase the number of battery storage systems connected to distribution
feeders, as well as those integrated into the transmission network.

Battery storage systems offer several benefits to many aspects of the grid.
For example, storage can be used to shave peaks and level loads, reducing
carbon emissions, and transmission and distribution losses. It can also help

7 Smart EV chargers choose a charging power/rate based on control signals that they receive
from the grid. They are capable of charging EVs at any rate below the maximum charge
power that they support.
8 The cost per kilowatt-hour of battery packs used by market-leading EV manufacturers was
approximately US$300 in 2014 [24].
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operators better match supply with demand to maintain frequency. Indeed, the
charge and discharge powers of storage systems can be adjusted even faster
than the operating setpoint of fast-ramping generators that provide regulation
service, making them excellent alternatives for balancing the future grid [6].
As a third example, storage can reduce the curtailment of renewable energy,
which is necessary when there is a risk of over-generation or the network
access link from a solar or a wind farm is overly congested and therefore
cannot transmit excess power to other locations.

It should be clear that the careful control of storage can reduce reverse
power flow, the need for frequency regulation from the grid, wasteful and
expensive renewable generation curtailment, and overall carbon emissions.
Whether storage systems actually offer any of these benefits depends on how
they are owned and operated in practice. For example, a control strategy
that tries to minimize solar curtailment would charge storage only from solar
panels and not from the grid to ensure that storage capacity is available
when the sun is shining, whereas a control strategy that provides frequency
regulation services would keep storage roughly half-full at all times to support
both up and down regulation. Thus, choosing the correct storage operation
strategy is a complex problem that we consider later in this brief.

1.2.4 Emerging Challenges and Opportunities

The three demand-side technologies presented in the prior section can be
classified into two major types. The first type introduces uncertainties in gener-
ation and load at various time scales. These uncertainties threaten the overall
reliability of the grid and mitigating them is quite costly, requiring additional
operating reserves. Renewable generation technologies are examples of this
type. The second type provides additional control flexibility to the operators,
thereby enabling operators to quickly react to operating conditions. Electric
vehicle chargers, smart renewable power inverters, and storage systems, col-
lectively referred to henceforth as active end-nodes, are examples of this type.
The synergy between these two types of technology could enhance system
reliability if they are carefully controlled by the grid; otherwise, these tech-
nologies impose new challenges to grid operators and can impair reliability.
We now consider this synergy in more detail.

1.3 Enabling Technologies for the Control of Active
End-Nodes

To address the challenges posed by the integration of the disruptive load and
generation technologies discussed in Section 1.2 requires the sophisticated
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control of active end nodes, which is the focus of our work. The introduction
of these controls will morph the traditional grid into an intelligent, more
reliable and economical, and less carbon-intensive network, referred to as the
“smart grid”.

1.3.1 Pervasive Measurement and Communication

The smart grid heavily relies on the availability of pervasive measurement,
communications, and computation in distribution networks to support two-
way flow of information between the grid and its customers. The possibility of
receiving near real-time information enables seamless control of active end-
nodes at scale to ensure reliability and efficiency. Hence, pervasive measure-
ment and communication, especially in the last mile of distribution networks,
are the key enabling technologies for preventing loss of grid reliability due to
the widespread adoption of the active end-nodes. To this end, several utilities
in the United States have begun to install relatively inexpensive, high-precision
phasor measurement units, called micro-synchrophasors, to monitor their dis-
tribution circuits. A micro-synchrophasor device provides high-sample-rate
synchronized voltage and current magnitude and angle measurements; these
measurements can be used in various diagnostic and control applications [22].
It is anticipated that many more distribution networks will soon be equipped
with such measurement devices [31].

In addition to the synchrophasor technology, millions of smart meters have
been rolled out around the world in recent years to collect more frequent
electricity consumption data from customers and, in return, receive price and
other signals from the grid. The two-way communication between meters
and the grid can be used to shave demand peaks through time-of-use pricing
and demand response (DR) programs9. Pervasive communication is possible
using either existing cellular networks or new low-power wide area networks
(LPWAN) [33].

1.3.2 Pervasive Control

Smart grid operators have to deal with fast-timescale dynamics that were
absent in the traditional grid. These dynamics are introduced by fluctuating
supply and demand and are observed even at low penetrations of active
end-nodes. Thus, fast-timescale control is necessary to counteract these fluctu-

9 Note that the advanced metering infrastructure (AMI) deployed in some jurisdictions for
billing purposes operate at at time scale of 10 minutes to an hour, and therefore are unable
to support applications that require frequent communications between the electric utility
and customers, such as demand response.
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ations, averting reliability and power quality problems. This is made possible
by the deployment of pervasive control elements, in the form of embedded
processors, that can be co-located with the element to be controlled. For
example, pervasive control allows us to control EV charging rates at a fine
timescale, on the order of seconds.

Smart grid customers can receive price and control signals from the grid
and will be capable of setting and enforcing preferences and deadlines for
their elastic loads.

Elastic loads are defined as a class of loads that can be controlled within a
limited range. Examples include dedicated storage, electric vehicles, and
thermostatically controlled loads (TCLs) with inherent thermal energy
storage. Depending on the jurisdiction, elastic loads might be controlled
directly by electric utilities or the customers who own these loads. In the
latter case, signals issued by the utility along with customers’ input can
be incorporated into the control process.

1.4 Need for a New Approach for Control of Active
End-nodes

Traditionally, control has focused on generation, since loads are viewed as be-
ing uncontrollable. Cost-effectively scheduling dispatchable generation units
to meet forecasted load and reserve requirements involves solving security-
constrained unit commitment10 and security-constrained economic dispatch
optimization problems. Unit commitment and economic dispatch are per-
formed in day-ahead and real-time electricity markets, respectively [34]11.
Both problems incorporate a set of complicated constraints, including gen-
erating unit and transmission network constraints, and are cast as optimal
power flow (OPF) problems [1]. However, these optimization problems do
not include numerous distribution network constraints; this is because distri-
bution networks are typically over-provisioned and unlikely to be stressed by
a specific dispatch decision. Moreover, it is quite difficult to incorporate end-
node objectives in the objective functions of these problems since they might

10 Unit commitment is a mixed integer programming (MIP) problem with many variables
and constraints. The current leading algorithm to solve this optimization problem is NP-
hard [19]. The Lagrangian relaxation of this problem can be solved more efficiently;
however, the obtained solution is suboptimal because of a nonzero duality gap [13, 19].
11 In some jurisdictions, the predicted output of large-scale renewable generators, such as
wind and solar farms connected to the transmission network, is also considered in the real-
time market. Short-term predictions of renewable generation are relatively accurate and,
therefore, incorporating them in the real-time market could reduce the need for operating
reserves.
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be competing with the objectives of grid operators. Thus, traditional grid
operation cannot be easily extended to control solar PV inverters, EV charg-
ers, and storage systems which are connected to distribution networks [28],
although this is necessary to ensure that distribution network constraints are
not violated.

At the same time, using ad hoc controls in the distribution network can
make the distribution control system unsustainable and insecure, potentially
leading to chaotic situations [29]. Hence, new mechanisms are required
to control the active end-nodes at scale in the distribution network. These
mechanisms should be developed as extensions of the mechanisms that are
already in place for balancing the grid. The following section specifies the
design goals for future distribution grid control mechanisms and describes a
new approach to the control of a vast number of active end-nodes.

1.4.1 Goals

Control mechanisms for active end-nodes should prevent line and transformer
overloads, mitigate large voltage fluctuations, and avoid reverse flows towards
primary distribution feeders. Additionally, an admissible control must satisfy
the following design goals:

• Be legacy compatible: Given the tremendous investments that have been
made in the infrastructure of the grid, new control mechanisms should be
compatible with existing components and operation rules of the grid.

• Increase utilization: To assure high reliability, the power system is tra-
ditionally designed and operated with a substantial operating margin12.
The smart grid should maintain reliability while improving the utiliza-
tion of generation, transmission, and distribution assets, for example by
supplying elastic loads during off-peak periods.

• Reduce carbon footprint: Control mechanisms should support large-
scale integration of low-carbon technologies into distribution networks
with minimal curtailment, thereby minimizing the overall carbon footprint
of the grid.

• Be cost efficient: The smart grid control architecture must be cost-
effective. For example, it should improve the economics of demand-side
technologies, thereby increasing their adoption.

• Be fair: End-nodes in the smart grid may differ in their types, technologies,
and service requirements. In such a heterogenous system with limited
available resources, fair power allocation is of paramount importance
to avoid starvation. Control mechanisms should provide some notion of
fairness to the end-nodes such as proportional fairness [17].

12 For example, the notion of n-1 reliability requires the system to reliably withstand the
failure of any one of its elements.
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• Be scalable: Given the number of active end-nodes that will be connected
to the smart grid, the underlying control system must be scalable. This is
because computing a control decision that applies to these end-nodes is a
computationally intensive task.

• Be responsive: To ensure reliability in the face of increased variability
and uncertainty in the smart grid, control mechanisms should rapidly
respond to contingencies and operator requests. Moreover, control mecha-
nisms should not result in unnecessary invocation of existing protection
mechanisms, which could cause service interruption and reduce the life
cycle of protection equipment.

• Be resilient: Grid control mechanisms are expected to fail gracefully and
automatically recover from a fault condition.

• Be non-disruptive: Control mechanisms should have an imperceptible
impact on end users’ performance, e.g., the time taken to charge an EV.

Note that a control mechanism should balance system-level objectives such
as scalability with user-level objectives such as fairness. These objectives are
often competing, and therefore, cannot be satisfied at the same time. A
control mechanism must necessarily make trade-off between these competing
objectives.

1.4.2 Optimal Control in Quasi Real-Time

We now discuss the broad outlines of a control scheme that meets the criteria
set out above. To begin with, it is obvious that the control of active end-
nodes in the distribution grid based on day-ahead predictions cannot reliably
and efficiently deal with the stochastic nature of renewable generation and
EV mobility. This is because control decisions that are computed based on
day-ahead forecasts are very likely to be either infeasible or suboptimal at
the time of their execution because of prediction errors; infeasible control
decisions can put power system reliability at risk. Maintaining a conservative
operating margin to accommodate these prediction errors results in low system
utilization. Thus, the growing penetration of active end-nodes motivates the
need for quasi real-time control based on fast timescale measurements.

Active end-nodes in the distribution network can be controlled in near
real-time using two different approaches. The first approach relies on real-
time measurements of the distribution network state, instead of proactive
power flow calculations. Given the availability of measurement nodes in the
distribution network and a reliable broadband communication network that
connects them to the end-nodes, the end-nodes can learn of changes in the
grid state (such as transformer and line loadings) in real-time and adjust their
power consumption or production accordingly, just as the TCP endpoints in
the Internet can learn of the congestion state of the network after a small delay
and back off in case of congestion without having a model of the underlying
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network [2, 3]. However, due to the uncoordinated actions of the end-nodes, it
is possible for the system to transiently move into an overload state, resulting
in physical stress to grid elements such as transformers.

The second approach relies on power flow calculations, which incorporate
a model of the distribution network, to compute a feasible and optimal control.
An optimization problem formulated for the distribution network is solved in
near real-time, using measurements of elastic and inelastic loads as well as
available renewable power. This approach also requires the knowledge of real
and reactive power consumption at different buses, which can be obtained
through real-time measurements of the end-nodes. Chapter 4 describes this
novel approach which guarantees that control is almost always admissible
unlike the first approach.

1.5 Chapter Summary

The century-old power grid has witnessed profound changes recently due to
the confluence of the following factors: 1) advances in battery and renewable
technologies and the subsequent reduction in their prices, 2) introduction of
high-power elastic loads, such as PEVs, into distribution systems, 3) strategic
decisions made by governments to reduce reliance on fossil fuels in favor
of renewable energy sources, and 4) the availability of inexpensive sensing,
communication, and control devices, which paved the way for pervasive
measurement and control in distribution networks. Some of these changes
may subject the grid to excessive amounts of variability and uncertainty that
threaten its reliability and reduce its efficiency under existing grid control
paradigms. This imminent threat can be addressed by harnessing the flexibility
offered by elastic loads. In particular, control of active end-nodes in quasi real-
time could enable operators to meet their efficiency and fairness requirements,
accommodate a higher penetration of PV generation in existing distribution
systems, and enhance service reliability by preventing network overloads,
reverse flows, and voltage deviations beyond operating limits.
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Chapter 2
Related Work

Abstract The increased adoption of active end-nodes can negatively impact
the reliable and economical generation, transmission, and distribution of
power. This chapter gives an overview of these potential impacts and surveys
related work on direct control of elastic loads to achieve both user-level and
system-level objectives. Balancing these two types of objectives is nontrivial,
giving rise to the design of various control architectures and many plausible
control schemes as discussed in this chapter.

2.1 The Impact of Active End-Nodes on the Distribution
Grid

Active end-nodes are becoming ubiquitous in distribution system [10, 11].
In view of this, many studies have explored the potential impacts of large-
scale integration of these technologies on the electrical grid through the
intensive use of steady-state and dynamic simulations [2, 24]. Performing
these impact studies for a given power system is indeed quite complex owing
to uncertainties about their point of connection and their size, and also the
degree of correlation that might exist between loads and local renewable
generation1.

It must be remarked that elastic loads, except for EVs, have been connected
in large numbers to distribution feeders for a long time and operators have
never considered them a threat to system reliability. With the availability of
low cost communications in recent years, elastic loads, such as air conditioners,
and space and water heaters, have been even utilized in some jurisdictions
to shave the peak demand and to provide regulation service to the grid (see
for example the peaksaver program in Ontario [22]). But unlike these loads,

1 For example, the workplace EV charging load is strongly correlated with solar generation,
while the home-level EV charging load is usually correlated with wind generation.
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demands of EV chargers can be significant, and are relatively unpredictable
and highly correlated. For example, EVs can be charged at up to 80A at 240V
with AC Level 2 charging [37, 52], an instantaneous demand of 19.2kW,
which is equivalent to the average demand of about ten average homes in
North America. We therefore next discuss the potential impacts of EV and PV
adoption on the distribution system.

2.1.1 Impact of EV Adoption

Studies on the impact of EV charging on distribution, transmission, and gen-
eration systems go back to the 1980s. An early paper by Heydt in 1983 [19]
anticipates that the load increase due to the future penetration of EVs would
fall within generation planning limits; however, distribution circuits may be
inadequate to accommodate the charging of EVs; therefore, transformer over-
loading and voltage deviations are expected. In this regard, load management
strategies are necessary to alleviate peak loading stresses. A similar observa-
tion is made by Rahman et al. [32]. The authors anticipate that with future
penetration of EVs, certain distribution branches may be subject to significant
overloads, even if the entire system has sufficient capacity. This is attributed
to the expected nonuniform growth of the EV charging load in a distribution
network.

The potential impacts of EV integration into the distribution network, in-
cluding increased energy losses, transformer and branch congestion, voltage
deviations that affect power quality, and phase imbalance, have been explored
extensively in the literature [8, 16, 21, 27, 30, 31]. In recent work, Fernán-
dez et al. [30] assess the impact of uncontrolled EV charging on large-scale
distribution system planning in two different case studies. They show that
the minimum reinforcement investment required to accommodate 62% EV
penetration can increase the total network costs by up to 19% compared to
a situation without EVs. Furthermore, energy losses increase by up to 20%
and 40% of actual values in off-peak hours for 35% and 62% EV penetration
respectively. The incremental investment can be reduced by 60-70% if a smart
charging strategy is adopted.

In an effort to underscore the need for coordinated charging,
Qian et al. [31] analyze the impact of four different EV charging strategies
on a typical UK distribution system. In the case of uncontrolled domestic
charging, where EVs start charging nearly simultaneously, the daily peak load
increases by 17.9%, and 35.8% for 10%, and 20% EV market penetration
levels respectively. This drastic increase in the peak load overloads several
branches and transformers, emphasizing the need for control.

In a similar line of work, Lopes et al. [27] evaluate the impact of EV inte-
gration into a typical medium voltage distribution network in terms of branch
congestion levels and voltage profiles for different charging strategies. The
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authors show that the voltage lower limit is almost reached at several distant
buses in the scenario with 10% EV penetration and uncoordinated charging.
However, the lower voltage limit is reached only when EV penetration reaches
52% if a smart charging strategy is adopted. The branch congestion level, i.e.,
the ratio of the line loading to its rating, is only slightly higher for the case of
52% EV penetration and smart charging than the case of 10% EV penetration
and uncoordinated charging, indicating the effectiveness of a smart charging
strategy in relieving congestion.

Clement Nyns et al. [8] also study the impact of low to moderate EV
penetration on distribution system losses and voltage deviations. Their results
imply that with 30% EV penetration, uncoordinated charging leads to more
than 10% voltage deviations, whereas coordinated charging keeps voltage
deviations below 10% at all times. Moreover, for all charging periods and
seasons, power losses noticeably decrease with coordinated charging.

The impact of EV adoption on aging of distribution transformers is explored
by Gong et al. [16] and Hilshey et al. [21]. In [16], a transformer thermal
model is used to study the impact of Level 2 EV charging on aging of the
distribution transformers installed at residential neighbourhoods. Monte Carlo
simulation results show that with poor coordination of charging times, the
transformer insulation life is greatly affected at relatively high EV penetration
rates. Simulation results presented in [21] indicate that coordinated charging
of EVs can reduce the annual transformer aging rate by more than 12.8% and
48.9% compared to uncoordinated charging when EV chargers are Level 1
and Level 2 (as established in [37]), respectively.

The above studies show that uncoordinated charging of a large population
of EVs could have detrimental impacts on the existing distribution networks.
Upgrading distribution circuits alone, would be quite costly for DSOs as
discussed in [30]. Therefore, DSOs must incorporate a control strategy to
reduce the required distribution reinforcement investment. Some of these
control strategies are discussed in Section 2.2.

2.1.2 Impact of PV Adoption

The exponential growth of global PV cumulative installed capacity [11] has
given impetus to the study of solar integration into power distribution net-
works and of the resultant architectural, technical, and operational problems,
such as adverse impacts on power quality, protection coordination, voltage
profiles, and feeder and transformer loading [24, 49]. The potential steady-
state and transient impacts of PV systems on volt/var control, power quality,
and power system operation depend on the penetration level and interconnec-
tion of PV units, and their interactions with loads and distribution equipment,
making it extremely complex to evaluate these impacts.
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Several attempts have been made to quantify the extent of local and system-
wide problems associated with PV integration. In [45], it has been shown
using simulations of a test network with rooftop PV systems connected to
secondary distribution lines that a 30% penetration of PV systems can be
accommodated without any change to voltage control systems. Should the
PV penetration increase to 50%, overvoltage is observed in simulations; this
suggests that the voltage control systems must be adjusted or re-engineered
at this penetration. Another study examines the impacts of high penetra-
tion of residential PV systems on distribution system protection and voltage
control [5]. The conclusion is that high PV penetration complicates the coor-
dination of protection equipment and creates unacceptable voltage swings
(beyond pre-defined limits) on feeders. In [20], a control methodology is
described for grid-scale battery storage systems to address the negative im-
pacts of PV integration; this methodology enables storage systems to provide
voltage stability and frequency regulation, and improves the economics of
distributed solar generation.

2.2 Control of EV Chargers

The control of smart EV chargers is essential to address the potential distri-
bution network problems discussed in Section 2.1, while satisfying user-level
objectives. Additionally, smart EV chargers and other elastic loads can be
controlled to support higher penetrations of distributed renewable generation,
achieve a desired response to power system dynamics, or provide system
services such as frequency regulation [1, 6, 15, 17, 25, 42]. This section only
surveys control mechanisms that aim to mitigate the negative impacts of EVs
on the distribution network and to optimize certain user-level objectives; thus,
it does not touch upon control mechanisms for delivering electricity to the
grid in vehicle-to-grid (V2G) applications.

The main focus of this section is on control schemes that do not put cus-
tomers in the control loop, meaning that the customers may specify charging
deadlines and preferences but cannot impede or delay the execution of control
decisions that are computed by the utility based on their input. These schemes
are referred to as direct control schemes. Unlike direct load control schemes,
price-based schemes assume some specific response from the customers to
changes in the electricity price. This assumption does not necessarily hold
in practice and the demand response is neither predictable nor immediate,
rendering these schemes of limited practical value [6]. For this reason, these
control schemes are not discussed in this section.

Existing work can be categorized into two based on the objectives they seek
to achieve. The first category encompasses approaches that take the perspec-
tive of the electric utility and satisfy one or several system-level objectives,
whereas the second category encompasses approaches that take the perspec-
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tive of users and satisfy one or several user-level objectives, where users are
either EV owners or charge service providers (CSPs). These control objectives
can be myopic or defined over a finite or infinite time horizon. Furthermore,
there are several possible approaches to control EV chargers. In particular,
EV chargers have been controlled using a schedule computed the prior day
(known as pre-dispatch scheduling) or in near real-time. Control decisions can
be made independently by EV chargers (a fully distributed approach), jointly
by EV chargers and intermediate control nodes installed at transformers (a
decentralized approach), or entirely by a computer cluster at the utility control
center (a centralized approach). Finally, the control scheme may require the
precise model of the distribution network along with load and generation
forecasts, or only rely on recent measurements of certain network parameters.
Thus, the extensive body of literature that has been developed around the
control of elastic loads can be divided into several categories based on the
following criteria:

• Time of control: The control algorithm can run in near real-time or
several hours in advance of power delivery.

• Information needs: The control algorithm may require the precise model
of the distribution network along with load and generation forecasts, or
rely on recent measurements of certain network parameters only.

• Decision-making approach: Control decisions can be computed in a
centralized or decentralized manner. The computation and communication
overhead of control greatly depends on this.

• Optimization horizon: Control objectives can be myopic or defined over
a finite or infinite time horizon.

Table 2.1 shows a taxonomy of existing work on coordinated charging accord-
ing to their objectives and control approaches.

Table 2.1 Taxonomy of related work

Objective Pre-dispatch Real-time
Centralized Decentralized

Utility

Avoid network congestion [36] [34, 35] [18, 21, 50]
Improve voltage profiles [8, 48] [4, 9]
Minimize losses [8, 36, 38] [9]
Flatten the load [14, 38] [14, 26]
Shave the peak load [29, 43] [46] [12]
Minimize the cost of generation [9]

Users

Minimize charging cost [28, 33, 36, 43] [51] [23]
Minimize charging time [53] [39]
Maximize EV owners’ convenience [50] [50]
Maximize CSP’s revenue [7]
Fair power allocation to EVs [40] [12]
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2.2.1 Pre-Dispatch Scheduling

Pre-dispatch scheduling approaches compute charging schedules for EVs by
solving an optimization problem in advance of power delivery. In some cases,
this optimization problem falls within the general class of optimal power flow
problems [8, 29, 36, 48]. Solving the OPF problem requires a precise model
of the distribution network and inelastic loads, as well as the knowledge
of the point of connection of chargers and arrival and departure patterns
of EVs. These parameters are difficult to determine or estimate in practice.
Hence, pre-dispatch scheduling approaches either maintain a conservative
operating margin to accommodate estimation uncertainties or perform power
flow calculations for numerous instantiations of random variables, e.g., EV
arrival and departure times, their initial state of charge (SOC), and their point
of connection. The former typically results in system under-utilization and the
latter significantly increases the computation time.

For example, Mehboob et al. [29] solve a distribution optimal power flow
(DOPF) problem to determine the hourly EV charging schedule and hourly
tap and capacitor settings that minimize the system peak. This optimization
problem incorporates voltage and feeder capacity constraints as well as EV
charging constraints. They employ a genetic algorithm based approach to
solve this DOPF problem. This approach generates many feasible EV load
samples and performs power flow calculations for each set of samples to find
a day-ahead most likely solution.

A DOPF problem is also formulated in [36] to control EV charging loads,
taps, and capacitor switching decisions for the next day in an unbalanced
three-phase distribution system. The authors consider various objectives and
incorporate the distribution substation capacity constraint in the nonlinear
programming problem. Specifically, they minimize the total energy drawn by
the local distribution company and its cost, the total feeder losses, and the
total cost of EV charging over the period of a day. The proposed day-ahead
hourly scheduling approach is evaluated on the IEEE 13-node test feeder and
a real distribution feeder. Compared to the uncontrolled charging case, their
approach prevents undervoltage conditions and reduces the peak demand
and losses.

Several other pre-dispatch scheduling approaches simply use the optimal
control framework without relying on power flow calculations. In these cases,
control might be computed more efficiently; however, it does not necessarily
respect distribution network constraints such as voltage limits. Following is
an overview of the most relevant work in this area.

In recent work, Gan et al. [14] and Ma et al. [28] use distributed control
to obtain a day-ahead charging schedule for EVs. In [14], the EV charging
control problem is formulated as a discrete optimization problem with the
objective of flattening the aggregate demand served by a transformer. A
stochastic decentralized control algorithm is proposed to find an approximate
solution to this optimization problem. It is shown that this algorithm almost
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surely converges to one of the equilibrium charging profiles. To facilitate
real-time implementation of this controlled charging scheme, the authors also
propose an online version of their decentralized control algorithm in which
EVs participate in negotiation on their charging profiles as they plug in for
charging, over time. In [28], a decentralized algorithm is proposed to find the
EV charging strategy that minimizes individual charging costs. It is shown that
the optimal strategy obtained using this algorithm converges to the unique
Nash equilibrium strategy when there is an infinite population of EVs. In the
case of homogeneous EV populations, this Nash equilibrium strategy coincides
with the valley-filling maximizing strategy, i.e., the globally optimal strategy.

In [43], a deterministic optimization problem is formulated to find a fleet
charging schedule which minimizes the overall charging cost, subject to the
available power, the battery capacity, and the charging power constraints.
The optimization problem is deterministic because it is assumed that the
connection and disconnection times of EVs, their energy demands, the price of
electricity, and the total wind generation are known a priori. The authors also
compare linear and quadratic approximations of the EV battery behavior in
terms of violations of the battery boundaries (minimum and maximum charge
levels) for the obtained charging schedule.

A similar line of work by Rotering et al. [33] explores the possibility of using
plug-in hybrid EVs for regulation and ancillary services while charging their
batteries with minimum cost. Specifically, dynamic programming is employed
to find a charging schedule that minimizes the EV charging cost based on
forecasts of the electricity price, EV driving patterns, and energy demands in
three different scenarios. If the control is incapable of supplying the energy
demand, it is assumed that the lack of charge is fulfilled by the internal
combustion engine consuming gas, which is presumably more expensive than
electricity.

The relationship between the objectives that are based on load factor, load
variance, and losses is investigated in [38]. The authors formulate three
optimization problems to minimize the load variance, to maximize the load
factor, and finally to minimize losses. These optimization problems are solved
by a centralized approach using day-ahead load predictions, noting that the
first two problems are convex and can be solved more efficiently compared
to the third one. It is shown through simulations on practical distribution
systems that solutions to these three problems are close, motivating the use of
load factor or load variance as the objective function rather than losses. In any
case, for practical systems the performance of the algorithm that minimizes
the load variance is quite similar to the one that minimizes losses.
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2.2.2 Near Real-time Control

The near real-time computation of charging schedules improves utilization
and reliability of the power system compared to the pre-dispatch computation
of the schedules by continuously adapting the charging rate of EV chargers to
the available capacity of the network. Hence, smart EV chargers use higher
rates when the distribution network has sufficient capacity, reducing these
rates once the network becomes congested. The real-time charging schedule
could be computed using either a centralized or a decentralized/distributed
approach. The following surveys related work in each category.

2.2.2.1 Centralized Approaches

Coordinated charging of EVs at parking facilities with a maximum total avail-
able amount of power is the focus of [7, 40, 51, 53]. In [53], the problem
of finding a schedule in a charging station with stochastic EV arrivals, vari-
able electricity prices, and intermittent renewable generation is modelled as
a constrained stochastic optimization problem which can be studied using
the Markov decision process framework. The objective is to minimize the
mean waiting time of EVs. In [51], the scheduling problem of EV charging
with stochastic arrivals and renewable generation is formulated as an infinite-
horizon Markov decision process. The objective is to maximize a social welfare
function that takes into account the total utility of customers, the electricity
cost associated with the charging schedule, and the penalty for failing to meet
the deadlines. In [7], it is assumed that there is a CSP that uses collocated
renewable sources and supplements the renewable with the energy purchased
from the grid. The authors formulate an online scheduling problem with the
objective of maximizing the operating profit of the CSP while meeting the
charging deadlines. This optimization problem is a mixed integer program. A
subset of EVs are selected for charging through an admission control process
and admission decisions are made based on EV arrivals, output of renewable
sources, and the electricity price. The scheduler can further optimize on the
time and quantity of the energy purchased from the grid.

In an effort to provide a notion of fairness, an optimization problem is
formulated in [40] that maximizes a weighted average of the state of charge
of parked EVs in the next time step, subject to the amount of energy available
from the utility, the maximum energy that can be absorbed by EVs, and the
ramp rate of EV batteries. Each weight term incorporated in the objective
function is a function of the energy price, and the remaining charging time and
the present SOC of the corresponding EV. The authors use four computational
intelligence-based algorithms, namely the estimation of distribution algorithm,
the particle swarm algorithm, the genetic algorithm, and the interior point
method, to solve this optimization problem and compare their performance.
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A DR strategy is proposed in [34, 35] to avoid transformer and feeder
overloads by controlling non-critical and controllable loads, including EVs.
This strategy determines household demand limits using a simple algorithm
which protects the distribution network from congestion, and issues the ob-
tained limits to in-home controllers. Subsequently, every in-home controller
determines which appliances should be on based on the priorities and prefer-
ences set by users in advance. The effect of the proposed DR on consumers
comfort is quantified using comfort indices introduced in [35]. Nevertheless,
the proposed DR strategy does not guarantee congestion prevention because
appliances might be turned on to satisfy users’ preferences even when the
transformer is congested.

Deilami et al. [9] propose a real-time smart load management algorithm
to coordinate EV chargers; this algorithm minimizes the total cost of genera-
tion and anticipated losses, while respecting user preferences. To solve this
problem, their approach is to use the maximum sensitivities selection method,
which selects EVs for charging from a queue sorted based on the sensitivity
of the loss function to EV charging loads. A load flow analysis is performed
in each time step to evaluate the objective function and ensure that system
constraints, including voltage limits and the available generation capacity, are
not violated. Nevertheless, this approach does not deal with the distribution
network problems, such as line and transformer congestion, and does not
provide fairness.

A two-stage controller based on a model predictive control (MPC) formu-
lation is designed in [4] to regulate charging of a time-varying number of
EVs and control a fixed number of distributed generation inverters under
the assumption that the load is periodic with period length of 24 hours. Us-
ing approximate power flow equations for radial distribution networks, the
proposed controller charges EV batteries to a desired SOC while tracking
an optimal reachable reference voltage at every bus. The proposed scheme
handles plug-and-play charging requests (as EVs join or leave the system)
by updating reference voltages to ensure stability and reliability under the
new dynamics. This plug-and-play operation comes at the price of delaying
charging of EVs that have arrived recently until bus voltages converge to the
updated reference values. Note that this control scheme does not address
branch and transformer congestion problems in the distribution network.

Turitsyn et al. [46] aim at maximizing the utilization of the excess dis-
tribution circuit capacity while keeping the probability of a circuit overload
negligible by controlling EV chargers. Using one-way broadcast communi-
cation, the authors regulate EV charging start times by computing a single
EV connection rate and sending it periodically to the chargers. This rate
determines, on average, how many EV chargers can start charging per unit
time.

In summary, most existing work on real-time centralized control of EV
chargers suffers from a scalability problem since computing the charging
schedule for a vast number of connected EVs is computationally expensive
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in a centralized fashion. Moreover, centralized control schemes may require
communication of sensitive information, such as EV departure times, to a
central controller. The central controller is also a single point of failure in the
distribution network. These issues can be addressed by distributing control
among the EV chargers and possibly other control nodes as suggested in [44].
Real-time decentralized control schemes are reviewed next.

2.2.2.2 Decentralized Approaches

This section describes decentralized and fully distributed control schemes that
run in near real-time. These schemes are scalable, robust, and use real-time
information instead of long-term predictions. However, they suffers from
three major shortcomings. First, they do not use a realistic model of the
distribution network, which includes all branches and transformers and their
operational constraints. Second, they do not evaluate the proposed solution
using power flow analysis when it is not originally found using power flow
calculations. Instead, many of them focus on flattening the demand of the
entire distribution network, ignoring bus voltages and loading of distribution
lines and transformers. Third, they do not balance efficiency and fairness of
the control algorithm. In fact, fairness is not a design goal of most of these
approaches. These schemes are discussed in the following.

Wen et al. [50] propose a novel approach to the EV charging control prob-
lem, where a subset of EVs are selected for charging in every time slot such
that user convenience is maximized and branch flow constraints are met. This
selection problem is posed as a combinatorial optimization problem, whose
convex relaxation can be solved in a control center using linear programming.
An efficient decentralized algorithm is then proposed based on the alternating
direction method of multipliers to determine the set of EVs that must be
charged in a given time slot. Using numerical simulations for different EV
penetration levels, the proposed centralized and decentralized approaches
are compared in terms of performance, computational complexity, and com-
munication overhead. The authors study the effects of the control timescale
and the rounding method, which maps continuous selection variables into
0 and 1, on the performance of the decentralized algorithm. Nevertheless,
this paper only addresses branch congestion and ignores other operational
constraints of the distribution network, does not use power flow analysis to
validate that computed charging schedules are feasible, and finally does not
attempt to allocate power to connected EVs based on a well-established notion
of fairness.

Fan [12] borrows the notion of congestion pricing from the Internet to
reduce the peak load while providing weighted proportional fairness to end
users. Exploiting two-way communications between the utility and users,
congestion prices are sent to users, enabling them to adapt their demands to
the capacity of the market in a fully distributed fashion. The user preference is
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modelled as a willingness-to-pay parameter, i.e., the weight factor in the utility
function of users. The proposed algorithm is then applied to EV charging to
obtain a charging rate allocation. Interestingly, the total EV charging load
varies with the range from which the weight factors can be chosen. Thus, the
utility has to limit this range to ensure that the total load is not greater than
the market capacity. Convergence behavior of the algorithm is studied using
both an analytical approach and a simulation-based approach. Note that this
work does not model the distribution network and does not incorporate the
capacity constraints of distribution lines and transformers and the charge rate
constraints of EV chargers.

In [39], several additive-increase multiplicative-decrease (AIMD) based
algorithms are used for distributed control of a set of EV chargers that share
a single constrained resource. The EV chargers independently increase their
demands by an additive factor until the shared resource becomes congested;
following this event, they reduce their demands by a multiplicative factor to
relieve congestion. The authors study the problem from the user perspective
rather than the utility perspective; they consider various scenarios and user-
level objectives, and propose an AIMD-like congestion control algorithm
for each scenario. Moreover, this work does not investigate the potential
distribution network problems and is not based on the theory of network
utility maximization (NUM); it instead relies on an arbitrary choice of AIMD
parameters.

In [18] a control mechanism is designed to deal with transformer overload-
ing by modelling the transformer thermal limit as a constraint. Specifically,
the authors formulate the EV charging problem as an open-loop centralized
control problem with the objective of minimizing the SOC deviations from
100% and also minimizing the control effort subject to the capacity constraint
of batteries and EV chargers, the temperature constraint of the substation
transformer, and the target SOC specified by EV owners. Using the dual de-
composition method, an iterative price-coordinated implementation of this
control mechanism is proposed which allows EV owners to compute their
charging rate locally. A receding-horizon feedback mechanism is employed
to account for unexpected disturbances, including fluctuations in inelastic
demands, changes in the number of connected EVs, changes in the ambient
temperature, and modelling errors. Note that this work deals with the substa-
tion transformer overloading problem and cannot prevent distribution line
overloads. Furthermore, it does not use power flow analysis to validate the
operation of the proposed algorithm in a test distribution network.

Li et al. [26] aim at flattening the load at the distribution network level by
extending the “max-weight algorithm” to the EV charging control problem.
Control rules solve an optimization problem that minimizes the L2 norm of
the aggregate load. It is shown that, in the long term, the solution to this
optimization problem can be made arbitrarily close to the solution of the
optimization problem that minimizes the variance of the aggregate load. The
former problem can be solved in real-time. Using numerical simulations of
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the IEEE 37-bus and 123-bus test feeders, the performance of the algorithm
is compared with static charging algorithms that use perfect knowledge and
imperfect forecast of the base load for different penetration levels. Note that
the authors do not attempt to address the distribution network problems due
to the simultaneous charging of EVs and their objective is merely to flatten
the load.

Jin et al. [23] propose an EV charging scheduling algorithm to minimize the
energy bill of users, and, at the same time, flatten the aggregated load imposed
on the power grid. The authors employ a grouping algorithm and a sliding
window iterative scheduling algorithm. The grouping algorithm reduces the
computation and communication overhead of the scheduling algorithm. It
runs at a centralized coordinator, which is called the information center, and
classifies the EV population into several groups based on a similarity metric
defined in terms of the start and end charging times, the energy requirement
of an EV, and the maximum charge rate of its charger. Once EV groups
are formed, the information center computes and broadcasts the charging
characteristic of every group. The charging schedule is then computed using
a sliding window iterative scheduling algorithm. Specifically, EVs belonging
to each group solve an optimization problem to minimize the group bill and
compute their charging schedule locally in a specific slot of every cycle, while
charging schedules of other groups remain unchanged. When the charging
rates of EVs within a group are determined, they send their updated charging
profiles to the information center. The information center broadcasts real-
time price/load information at the beginning of each slot of each cycle to
coordinate EV chargers. When the algorithm converges, the obtained charging
schedule also optimizes the total generation cost. This work does not take
fairness into account, does not address distribution network problems due to
the simultaneous charging of EVs, and does not validate the results through
power flow analysis of a test distribution system.

Hilshey et al. [21] propose two automaton-based strategies for coordinating
EV charging to limit the power supplied by transformers and decelerate their
aging. Their approach is to compare the transformer aging status against four
thresholds to determine whether the number of EVs being charged should
be increased, decreased, or held constant in the next time period. Once the
number of active chargers is determined, one of the proposed decentralized
automaton-based strategies is used for admission control. The first strategy
is a first-come first-served strategy in which every EV sends a charge request
to the transformer. If the request is denied due to congestion, it is queued
and processed again in the next time slot. The second strategy is probabilistic;
it allows chargers to specify urgency by agreeing to pay a higher rate. If
charging is not urgent and the request is denied, the charge request is sent to
the transformer in the next time slot with a probability p. If charging is urgent
and the request is denied, a request is sent to the transformer in every future
time slot until it is admitted. Note that both control strategies do not provide
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fairness, and are only applicable to a single transformer supplying fixed-rate
EV chargers. Moreover, the aging thresholds are chosen in an ad hoc manner.

2.3 Control of Renewable Inverters

Control will not be limited to elastic loads in the smart grid. Smart inverters,
which are capable of injecting and consuming reactive power and curtailment
of real power, can also be controlled by the utility to address growing concerns
over widespread adoption of PV systems, and also achieve several system-
level objectives. The optimal control of PV inverters has received increased
attention in recent years. For example, Farivar et al. [13] propose the fast
timescale control of the reactive power injection of PV inverters to minimize
line and inverter losses as well as the energy consumption through voltage
optimization. This problem is formulated as an OPF for a radial distribution
system and the optimal voltage regulation operation is evaluated on a distri-
bution feeder on the Southern California Edison system. Similarly, the authors
of [3] propose a real-time distributed control of the reactive power output of
smart inverters to minimize feeder head real power consumption. They utilize
a model-free control algorithm that relies on periodic measurements of the
feeder head real power broadcast by the substation.

An OPF problem is formulated in [41] to determine an PV inverter control
strategy that improves voltage magnitude and balance profiles, while mini-
mizing network losses, inverter losses, and solar generation curtailment. This
multi-objective optimization problem is solved using a sequential quadratic
programming approach. The performance of this control strategy is evaluated
through power flow analysis in a real unbalanced three-phase low-voltage
distribution system in Australia. In a similar line of work, Turitsyn et al. [47]
find the optimal dispatch of the inverter’s reactive power to minimize line
losses and maintain the voltage within an acceptable range in a radial distri-
bution system. None of these control schemes takes advantage of elastic loads
to minimize the curtailment of solar power.

2.4 Joint Control of Elastic Loads and Renewable Energy
Systems

The impact studies presented in Section 2.1 suggest that PV systems and elastic
loads might have opposite impacts on distribution circuits. Specifically, the
uncontrolled charging of a large population of EVs can result in undervoltage
and equipment overloading, whereas the uncontrolled operation of a large
number of solar inverters can cause overvoltage and reverse power flow
toward the distribution substation. Thus, it is reasonable to extend the optimal
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control framework to jointly control smart inverters and elastic loads. This
control scheme enables the grid to safely accommodate higher penetrations of
renewable generation and elastic loads, while enhancing the overall reliability
and cost-effectiveness of the power system. Despite the significance of such a
control scheme in future distribution systems, the synergy between inverter-
based renewable energy systems and elastic loads has not been exploited in
the literature to stabilize voltage, relieve congestion, prevent reverse flows,
and minimize curtailment in a distribution system with a high concentration
of renewable generation. Chapter 4 expands on this idea.

2.5 Chapter Summary

Large-scale integration of elastic loads and renewable energy systems can
negatively impact reliable and economical generation, transmission, and
distribution of power if these end-nodes are not controlled properly. This
has given impetus to the design of mechanisms to control elastic loads and
renewable inverters. However, most related work focuses on controlling elastic
loads, very little work focuses on controlling smart inverters, and practically
no work explores the joint control of these technologies. The extensive body
of literature that has been developed around the control of elastic loads can
be divided into several categories based on the following criteria:

• Time of control: The control algorithm can run in near real-time or
several hours in advance of power delivery.

• Information needs: The control algorithm may require the precise model
of the distribution network along with load and generation forecasts, or
rely on recent measurements of certain network parameters only.

• Decision-making approach: Control decisions can be computed in a
centralized or decentralized manner. The computation and communication
overhead of control greatly depends on this.

• Optimization horizon: Control objectives can be myopic or defined over
a finite or infinite time horizon.

A control scheme that fully meets the design goals specified in Chapter 1
must be decentralized and based on real-time measurements. This scheme
should enhance power system reliability and efficiency, reduce its carbon emis-
sions, satisfy user-level objectives, and mitigate adverse impacts of large-scale
adoption of solar PV systems and EVs, including large voltage fluctuations,
network congestion, reverse flow, and violation of voltage limits. None of the
control schemes surveyed in this chapter can satisfy all of these objectives
while meeting the design goals specified in the previous chapter.
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Chapter 3
System Model

Abstract This chapter presents models and operating constraints for inelastic
loads, PV systems, EV chargers, and dedicated storage systems connected to
distribution feeders, along with a linear branch flow model for power flow
analysis in radial distribution systems. These models can be used to formulate
a control problem for active end-nodes. A plausible fairness criterion is also
introduced in this chapter.

3.1 Power Distribution System

The power distribution system comprises a large number of lines, transform-
ers, and other devices that are essential for reliable delivery of electricity to
customers in urban and rural areas [12]. A radial distribution system1 typi-
cally has a single source of supply, i.e., the distribution substation, delivering
power to residential and commercial loads through feeders radiating from
the substation and laterals (or secondary distribution lines) branching from
these feeders at certain points, known as buses. Figure 3.1 depicts the one-line
diagram2 of a three-phase distribution network interfacing with the transmis-
sion network and power stations at the substation. The voltage is initially
reduced by the substation transformer and later by pad-mount and pole-top
transformers, which feed a small number of customers in a neighbourhood, to
the nominal supply voltage.

A radial distribution system has a logical tree topology. The substation
is the root of this tree, and electrical loads, such as homes and businesses,
are its leaves. Radial systems have been designed with the assumption that

1 Most distribution systems are radial. Even in some cases where the network topology is a
mesh, switches are often operated in a way that power flows only on a radial sub-graph of
the network.
2 A one-line diagram represents all phase conductors between two buses by a single line.
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Fig. 3.1 A schematic diagram of a radial distribution network that emanates from a
distribution substation and consists of a number of balancing zones, one of which is
illustrated here. Rooftop PV panels, storage systems, and EV chargers are connected to
secondary distribution lines, similar to residential and commercial buildings.

real power flows always in the same direction, from the substation to loads.
Reverse power flow can negatively affect the operation of voltage regulators
and protective devices [15], and is therefore not allowed in the distribution
system beyond balancing zone.

A balancing zone is defined as a subtree in which reverse flow does not
cause any problem for voltage regulators, circuit breakers, and other
distribution equipment. Thus, loads can be supplied by any distributed
generation resource within the same balancing zone even if this results
in reverse flow in some part of the zone. In most distribution systems
today, a balancing zone is rooted at a distribution transformer and en-
compasses the low-voltage residential distribution network fed from a
distribution transformer and the loads that are connected to it, as shown
in Figure 3.1. However, in some jurisdictions that have invested in grid
modernization, such as in many parts of Germany, power flow is permit-
ted in both directions in the entire distribution network, and therefore,
nearly the entire network, including the substation, is contained in a
single balancing zone.

3.1.1 Network Model

Consider a tree graph G = {B,L} that represents the topology of a radial
system, comprising a set B of buses3 and a set L of primary distribution lines

3 We consider a load bus, laterals radiating from it, and service transformers as a single
unit. Thus, downstream loads are aggregated at the load bus as discussed in Section 3.2.5.
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that connect these buses. Let BZ⊂ B be the set of buses at the root of each
balancing zone, Bi be the set of buses located downstream of bus i, excluding
bus i itself, and Li be the set of lines located on the unique path from the
substation to bus i.

To simplify the model, the radial system is studied on a per-phase basis,
ignoring the dependency between phases. Additionally, homes, businesses, and
other end-nodes connected to laterals are modelled as single-phase constant
complex power loads, i.e., their power consumption is voltage-independent.

A time-slotted model with time slots of equal length τ (typically of the
order of several seconds) is used to study the dynamics of the system. The set
of time slots is denoted T and it is assumed that the network configuration,
the demand of inelastic loads, the solar power generated by each panel, the
storage output, and the number of plugged-in EVs and their charge power do
not change during a time slot. This assumption is necessary to study a dynam-
ical system as a sequence of time slots. To simplify the conversion between
energy and power units, Watt-τ is used as the unit of energy transmitted,
produced, or consumed. For instance, if an EV is charged at the constant rate
of 1 Watt in a 1 minute time slot, it consumes 1 Watt-minute of energy.

Consider the distribution system in a time slot t. For a bus i ∈ B, the bus
voltage magnitude measured on a per unit basis is denoted vi(t) and the
aggregated real and reactive power consumed at this bus are denoted pi(t)
and qi(t), respectively4. Let bus 0 be the substation (source) bus and v0 be its
voltage, which is assumed to be known. The substation bus voltage is used as
the base voltage value in the per-unit system; hence, v0 is equal to 1 p.u. here.
The impedance of a line connecting bus i to bus j is denoted zij= rij + jxij ,
where j is the imaginary unit, and rij and xij are the line resistance and
reactance, respectively. Furthermore, the sending-end apparent power flow
from bus i to bus j is denoted Sij(t)= Pij(t)+ jQij(t), where Pij(t) and Qij(t)
are the sending-end real and reactive power flowing between these two buses.
Hence, we have Pij(t) = −Pji(t), Qij(t) = −Qji(t), and Sij(t) = −Sji(t).

3.1.2 Operating Constraints

Equipment Loading Resistive heating limits the capability of lines and trans-
formers to transmit power. Hence, every line or transformer in a distribution
network has a nameplate rating that represents its load carrying capability
without overheating5. Equipment loading must not exceed its nameplate
rating over an extended period of time [8].

An electric utility can specify a control setpoint, i.e., a desired loading level,
for each line or transformer below its nameplate rating to reduce the risk

4 Note that pi and qi are zero if no load is attached to bus i.
5 Line ratings are usually expressed in terms of ampacity, whereas transformer ratings are
expressed in terms of apparent power.
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of equipment overloading by the control system. The aggregate equipment
loading, i.e., the sum of elastic and inelastic demands that it supplies, should
converge to this setpoint with only a limited number of excursions above the
nameplate rating. A conservative utility can ensure a very low congestion
level by choosing an appropriately low setpoint. Thus, the setpoints permit
the utility to balance utilization and reliability in a distribution network.

Let ξij be the setpoint associated with a line connecting bus i to j or a
transformer installed between bus i and j. It is assumed that the setpoints are
expressed in Watts for distribution lines and transformers because the electric
utility can easily translate line and transformer ratings, which are expressed in
Amperes and Volt-amperes, respectively, into the setpoints using a conservative
estimate of the power factor and the operating voltage at corresponding
nodes. Thus, the following constraint can be written for distribution lines and
transformers6, including the substation transformer which is located between
bus 0 and the next bus:

Pij(t) ≤ ξij ∀ (i, j) ∈ L, t ∈ T (3.1)

Voltage Limits The distribution system code requires the actual service volt-
age to be maintained within a tolerance band, typically ±5% of the nominal
voltage [13]. To ensure that the service voltage stays within these strict bounds,
electric utilities indirectly control voltage on the primary circuit, taking into
account the expected voltage drop along feeders. This involves the control
of transformer load tap changers (LTCs), voltage regulators, and switched
capacitor banks. The constraint on the bus voltage can be written as:

v2min ≤ v2i (t) ≤ v2max ∀ i ∈ B, t ∈ T (3.2)

where vmin and vmax are the lower and the upper voltage limits that are set to
0.95p.u. and 1.05p.u., respectively. Note that this constraint is written in a
quadratic form to emphasize that it is linear in v2i (t), which appears in (3.15).

Flow Direction Reversal of real power flow can negatively impact protection
coordination and operation of voltage regulators as distribution circuits are
designed with the assumption that the direction of power flow is from the
substation to loads at all times. For example, reverse flow conditions can
cause network protectors, which are installed at distribution transformers, to
open unnecessarily and create problems when they reclose [5]. To avoid these
problems, many utilities strictly forbid reverse flows outside a balancing zone,
meaning that real power cannot be injected to the network at a load bus that
represents the root of a balancing zone. This constraint can be written as:

pi(t) ≥ 0 ∀ i ∈ BZ , t ∈ T (3.3)

6 We are abusing notation here by referring to the real power supplied by the substation
transformer or a service transformer as Pij , which also denotes the real power flow at the
sending end of a line.
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3.2 End-Node Models and Constraints

This section presents time-slotted models and operating constraints of inelastic
loads, solar inverters, battery storage systems, and EV chargers connected to
distribution feeders. These models describe their operation and their state
evolution.

3.2.1 Inelastic Loads

Inelastic (residential and commercial) loads are connected to the lateral feed-
ers branching from the buses. The real power and reactive power consumed by
an inelastic load i in time slot t are denoted pli(t) and qli(t), respectively, and
the set of all inelastic loads connected to the distribution network is denoted
I. The demand of inelastic loads must be met at all times, unlike the power
consumption of elastic loads that can be controlled by the utility within some
bounds.

3.2.2 Solar Photovoltaic Systems

Consider a rooftop PV system that is connected via a smart inverter to the
electrical service panel of a building. This small-scale PV system is single
phase and does not need an interconnection transformer. The smart inverter
converts the DC output of the system to AC at nominal supply voltage and
frequency and provides a wide range of capabilities. These capabilities include
injecting or absorbing reactive power and on-demand curtailment of real
power7 [10].

The inverter model adopted here is similar to the models described in [6,
14] and assumes that real and reactive power outputs of an inverter can be
controlled independently and simultaneously. Note that inverter losses are
ignored here. Let J denote the set of PV systems in the distribution network,
and psi (t), s

s
i , p

s
i (t), and qsi (t) denote the available solar power, the inverter’s

rated apparent power capacity, the real power output, and the reactive power
output of the PV system i in a time slot t, respectively. Given that the rated
apparent power capacity of the inverter is known and the available solar
power is measured in this time slot, the following constraints can be written

7 Modern inverters can synthesize reactive power just as they produce real power. Despite
the fact that the current IEEE 1547 standard for integration of distributed energy resources
requires inverters to operate at unity power factor, the use of inverters to assist with
voltage regulation is currently an active area of research as they can be controlled on a
faster timescale compared to load tap changers and switched capacitors. This possibility is
indicated in the proposed IEEE 1547.8 standard.
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for real and reactive power contributions for this PV system:

0 ≤ psi (t) ≤ psi (t) ∀ i ∈ J , t ∈ T (3.4)

psi (t)
2 + qsi (t)

2 ≤ ssi
2 ∀ i ∈ J , t ∈ T (3.5)

Note that a negative value of qsi (t) means that the inverter is consuming
reactive power, while a positive value means that it is injecting reactive power
in that time slot. Also note that the second constraint defines a convex set
although it is a nonlinear constraint.

3.2.3 Battery Storage Systems

Battery storage systems are connected via an interface for AC/DC conversion
and a battery management system (BMS) to the electrical service panel
of residential and commercial buildings and distribution feeders. The BMS
monitors the battery SOC, communicates with external devices, and ensures
that charge and discharge operations are within limits of its safe operating
area. It is assumed that the storage system can immediately adopt any feasible
charge or discharge power desired by the controller.

Our battery model, which is similar to one used in [9], assumes that the
battery is only capable of absorbing or injecting real power (not reactive
power). Let S be the set of battery storage systems in the distribution network
and pbi (t) be the real power injection of the battery storage system i in time
slot t. A negative value of pbi (t) indicates that the battery is charging in this
time slot (acting as a load) and a positive value indicates that it is discharging
(acting as a generator). A feasible pbi (t) is required to be between the effective
maximum charge and discharge powers, denoted pb

i
(t) and pbi (t):

−pb
i
(t) ≤ pbi (t) ≤ pbi (t) ∀ i ∈ S, t ∈ T (3.6)

In this model, the effective maximum charge and discharge powers of the
battery depend on its SOC (a number in [0 1] interval), and the maximum
charge and discharge powers supported by the BMS, denoted αci and αdi . The
following two constraints prevent storage from overflowing or underflowing:

pb
i
(t) = min{αci , (ci − ci(t))×

bi
ηci
}

pbi (t) = min{αdi , (ci(t)− ci)× bi × ηdi }

where bi is the energy capacity of the battery, ηci and ηdi are its charge and
discharge efficiencies (≤ 1), and ci(t), ci, and ci are its current, minimum, and
maximum states of charge (∈ [0 1]), respectively. Hence, the energy content
of the battery in time slot t is ci(t)× bi.



3.2 End-Node Models and Constraints 39

The state of charge evolution of the battery can be written as:

ci(t) =

 ci(t− 1)− ηci ×
pbi (t−1)
bi

if −pb
i
(t− 1) ≤ pbi (t− 1) ≤ 0

ci(t− 1)− pbi (t−1)
ηdi×bi

if 0 < pbi (t− 1) ≤ pbi (t− 1)

3.2.4 Electric Vehicle Chargers

Smart EV chargers connect to the electric circuit of residential and commercial
buildings. It is assumed that chargers only consume real power and EV batter-
ies cannot be discharged to offer system services as in the V2G case; the energy
stored in the EV battery is solely used by the motor to drive the vehicle. This
is the main difference between EVs and dedicated storage systems; the other
difference being that EVs can drive away, unlike stationary storage systems.

A smart charger is called active when an EV is plugged in and ready to
be charged. An active smart charger can provide any feasible charge power
desired by the operator. The charge power is assumed to be independent of
the SOC of the connected EV8. Let E be the set of EV chargers connected to
the distribution network. The charging load of an EV i is characterized by its
maximum and minimum demands in a given time slot t, which are denoted
pei (t) and pe

i
(t) and are defined as:

pei (t) = min{βi, ei(t)}

pe
i
(t) = min{pei (t),

ei(t)

di
}

where ei(t) is the amount of energy required to fill the battery9, βi is the
maximum charge power supported by the charger, and di is the charging
deadline of the EV expressed in number of time slots. Hence, a feasible charging
rate for this time slot, denoted pei (t), must be between the maximum and
minimum demands:

pe
i
(t) ≤ pei (t) ≤ pei (t) ∀ i ∈ E , t ∈ T (3.7)

In this work the minimum demand of a charger, pe
i
, is set to zero10 since

the proposed charging scheme is best-effort and does not guarantee to fulfill
the charging demand before the deadline (it might be infeasible to meet the
deadline).

8 This is a simplification. In fact, when the SOC is high, charge power must be limited to
prevent overvoltage.
9 A charger i sets ei(t) to zero if it is inactive at the beginning of time slot t. Hence,
pe
i
(t) = pei (t) = 0 in that time slot.

10 This is similar to the case that di =∞ for every charger i.
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Finally, the amount of energy required to fill the battery evolves according
to the following equation:

ei(t) = ei(t− 1)− γci × pei (t− 1)

where γci is the charge efficiency of the battery.

3.2.5 Load Aggregation at Buses

Given the models of loads and active end-nodes, it is straightforward to derive
the total real and reactive power consumed at each bus. Let Al, Ae, As, and
Ab encode the point of connection of inelastic loads, EV chargers, PV systems,
and battery storage systems. For example, Al

ij is 1, if an inelastic load indexed
by i is connected under a load bus j, and is 0 otherwise. The other matrices
are defined in a similar way. Thus, the total real and reactive power consumed
at bus j in time slot t can be obtained as follows:

pj(t) =
∑

i:Al
ij=1

pli(t) +
∑

i:Ae
ij=1

pei (t)−
∑

i:As
ij=1

psi (t)−
∑

i:Ab
ij=1

pbi (t) (3.8)

qj(t) =
∑

i:Al
ij=1

qli(t)−
∑

i:As
ij=1

qsi (t)− qcj(t) ∀ j ∈ B, t ∈ T (3.9)

where qcj(t) represents the total reactive power provided by shunt capacitors
connected to bus j in time slot t. Hence, qcj is zero when no shunt capacitor
is connected to a bus. Note that battery storage systems and EV chargers are
assumed to operate at unity power factor.

3.3 Power Flow Model

Power flow in a balanced radial distribution system can be approximated
with single-phase recursive branch flow equations, known as DistFlow equa-
tions [2, 3, 4]. This specific formulation leads to efficient solution methods for
computing bus voltages and branch flows, given the real and reactive power
drawn from or injected to every load bus. This section presents the DistFlow
model and a linearized power flow model based on an approximation that
ignores power losses.

The DistFlow model can be described with the following equations:
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Pij(t) = pj(t) +
∑

k 6=i:(j,k)∈L

Pjk(t) + rij
Pij(t)

2 +Qij(t)
2

vi(t)2
(3.10)

Qij(t) = qj(t) +
∑

k 6=i:(j,k)∈L

Qjk(t) + xij
Pij(t)

2 +Qij(t)
2

vi(t)2
(3.11)

v2j (t) = v2i (t)− 2(rij(t)Pij(t) + xij(t)Qij(t)) + (r2ij + x2ij)
Pij(t)

2 +Qij(t)
2

vi(t)2

(3.12)

where Pij(t)
2+Qij(t)

2

vi(t)2
is the square of the current magnitude that is being

carried by the line connecting bus i to bus j, meaning that the quadratic
terms in the above equations represent line losses. Note that an OPF problem
that incorporates the DistFlow model is not convex and, therefore, finding its
solution(s) will be of exponential complexity in the number of nodes.

Since losses are typically quite smaller than the real and reactive power
flow components, an approximation that ignores the higher order loss terms
introduces only a small error on the order of 1%. This approximate power
flow model is referred to as the simplified DistFlow. This model was originally
proposed in [4] and has been used several times to formulate convex optimal
control problems for distribution networks, see for example [1, 7, 14]. The
simplified DistFlow equations can be written as follows after unfolding the
recursions:

Pij(t) =
∑
k∈Bi

pk(t) ∀ (i, j) ∈ L, t ∈ T (3.13)

Qij(t) =
∑
k∈Bi

qk(t) ∀ (i, j) ∈ L, t ∈ T (3.14)

v2j (t) = v2i (t)− 2(rijPij(t) + xijQij(t)) ∀ j ∈ B, t ∈ T

= v20 − 2

(∑
k∈B

pk(t)
∑

(m,n)∈Lj
⋂
Lk

rmn +
∑
k∈B

qk(t)
∑

(m,n)∈Lj
⋂
Lk

xmn

)
(3.15)

where Bi is the set of buses downstream of bus i and Lj
⋂
Lk is the set of

lines that supply both bus j and bus k. Observe that these equations are linear
in the squared voltage magnitudes, and real and reactive power flows. Also
remark that the linear branch flow equations (3.13-3.15) make it possible to
enforce capacity and voltage limits in optimal control problems without losing
computational tractability.
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3.4 Fairness and Resource Allocation

It is crucial for an allocation policy to ensure that users are treated fairly and
no user is starved of service in a system with constrained resources that are
shared by many users. Fairness can be defined in different ways depending on
the context. This has motivated the development of an optimization framework
to unify various fairness criteria for systems with single or multiple types of
resources.

The idea is to attribute a utility, i.e., a measure of satisfaction, to every user,
assuming that users are greedy (in terms of the resources they want) and their
utility increases with the amount of resources allocated to them in an interval
that spans over one or several time slots. A proportionally fair allocation is an
allocation that maximizes a global objective function defined as the sum of
the logarithm of the utility function of all users [11].

A fair allocation is a socially optimal allocation, i.e., an allocation that
maximizes a utilitarian criterion which is a function of the utilities
of individuals and can be defined in many different ways. There are
several well-established axiomatically justified notions of fairness, such
as max-min fairness, proportional fairness, minimum potential delay
fairness, and the more general notion of utility proportional fairness;
these notions of fairness differ in the choice of the global objective
function. This work adopts the notion of proportional fairness since it
is the only one that provides a scale invariant Pareto optimal solution,
which is consistent with axioms of fairness in game theory [16].

In Chapter 4, the notion of fair resource allocation is extended to power
distribution systems with a certain population of controlled loads, such as EV
chargers. The goal is to allocate the total available real power to EV chargers
in a fair and efficient manner. A utility is attributed to each EV owner, which
is defined as the instantaneous charge power of their EV.

3.5 Chapter Summary

In this chapter, simplified time-slotted models are presented for conventional
loads and the active end-nodes, and an approximate linear branch flow model
is introduced for radial distribution systems. These branch flow equations can
be incorporated in the formulation of convex optimal control problems, as
discussed in the next chapter. Finally, the notion of proportionally fairness is
described in the context of the allocation of real power to EV chargers in the
distribution system.
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Chapter 4
Optimal Control of Active End-nodes

Abstract This chapter studies a radial distribution system, which is divided
into a number of balancing zones, and proposes a decentralized scheme for the
joint control of EV chargers, PV inverters, and storage systems that are under
the exclusive control of the utility. The proposed open-loop control scheme
exploits the synergy between EV chargers and PV inverters to cancel out their
effects on distribution circuits, and relies on a sophisticated distribution system
model and near real-time measurements of the end-nodes to simultaneously
achieve the utility-defined objectives. Our decentralized control scheme is
compared to two conservative, fully distributed control schemes that enable
customers to control the active end-nodes installed in their premises without
the benefit of coordination from the utility.

4.1 The synergy between EV chargers and PV inverters

Many utilities have begun to experience the impacts of a high concentration
of PV systems and an increasing number of EV chargers on their distribution
circuits. As discussed in Chapter 2, overvoltage and undervoltage conditions,
transformer and feeder overloads, and reverse power flow are more likely to
happen in these distribution networks. Reverse flow, which occurs when solar
generation exceeds feeder loading, could cause protection coordination prob-
lems and overuse of voltage regulators and switched capacitors, shortening
their expected life cycle [1].

To mitigate these problems, utilities can limit PV and EV charger installa-
tions in size and number; but this comes at the price of a significant reduction
in the efficiency of the grid and the flexibility that it offers to its customers.
A more promising approach would be to exploit the synergy between EV
chargers, storage systems, and PV inverters to reliably accommodate a higher
penetration of these active end-nodes in existing distribution systems. For
example, the charge power of EV chargers and storage systems located in

45
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a balancing zone can be controlled to absorb solar generation locally when
it peaks. Similarly, real and reactive power outputs of PV inverters can be
adjusted to match demands of EV chargers within the same balancing zone.
This enhances reliability, enables charging a larger population of EVs, reduces
wasteful and expensive solar generation curtailment and overall carbon emis-
sions, and most importantly eliminates the trade-off between reliability and
efficiency.

Main 

Panel
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Controller

Battery 
Management 

Unit

Battery 

Storage
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Charger

=

Rooftop PV

Smart 

Inverter

Fig. 4.1 A schematic diagram of a small business with a rooftop PV system, a battery storage
system, a PEV, and other inelastic loads that are connected to the mains via an electrical
service panel. The smart inverter, the smart EV charger, and the battery management system
communicate with the upstream controller(s) over a broadband communication network,
depicted by dashed lines.

Consider a radial distribution system that supplies homes and small busi-
nesses constituting a number of balancing zones. The active end-nodes, in-
cluding solar inverters, storage systems, and EV chargers, are assumed to be
installed at small businesses1 and EVs are assumed to be parked and con-
nected at these small businesses during business hours. Hence, the chargers
are likely to be active during the day when solar energy can be harnessed.
The active end-nodes connect to the electrical service panel of the building
and communicate with an upstream controller, which will be discussed in
Section 4.2, over a proprietary network as illustrated in Figure 4.1. Assuming

1 A business does not necessarily install all three technologies.
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that the utility is granted remote control and monitoring of active end-nodes2

and pays for solar generation even if it is curtailed, we design an optimal
control scheme for EV chargers, PV inverters, and storage systems to simulta-
neously achieve multiple utility-defined objectives, subject to the network and
end-node constraints described in Sections 3.1.2 and 3.2. This scheme enables
sharing of solar generation and stored energy within each balancing zone.

The utility has four kinds of control knobs in the last mile of the distribution
network, namely the charge power of EV chargers, pe(t), the real and reactive
power outputs of inverters, ps(t) and qs(t), and the real power contribution of
storage systems, pb(t). The optimal control is found by solving a sequence of
two optimization problems for every time slot in a decentralized fashion (at
the level of the substation and the level of balancing zones), where the length
of each time slot is 1 minute during which the number of active end-nodes and
household and business demands are assumed to be constant. The proposed
control is myopic as the objective functions depend only on the charge power
of EV chargers, real and reactive outputs of inverters, and storage operations
in the current time slot, ignoring their future and past dynamics. The myopic
approach is reasonable given that EVs are unpredictable and can drive off at
any time.

4.2 Control Objectives

The utility must meet the demand of homes and businesses at all times. Addi-
tionally, it seeks to operate active end-nodes so as to maximize its revenue,
assuming that it has full control over EV chargers, PV inverters, and battery
management systems. The utility is also required to implement government
mandates, such as expanding renewable energy generation and cutting emis-
sions. This leads to a multi-objective optimization problem that can be solved
to obtain the optimal control.

These objectives are conflicting, so any controller design will need to make
a trade-off between the objectives. Our approach is to put the objectives into
a total ordering, as described next. Note that a different ordering would result
in a different control system. The control objectives that we consider are
listed below in descending order of importance to the utility: 1) maximize
the utility’s revenue by maximizing the total power delivered to elastic loads
from different sources and, in particular, by allocating the available power to
connected EVs in a fair manner, 2) minimize the curtailment of solar power,
3) minimize the use of conventional power from the grid, thereby reducing
carbon emissions. The following sections discuss these control objectives
and argue that this particular ordering is both reasonable and necessary.

2 Customers may relinquish control of active end-nodes in exchange for a fixed reduced
electricity price. In this case, any control signal issued by the utility is assured of an
immediate cooperative response.
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Section 4.3 then formulates a series of two optimization problems to achieve
these objectives in the order specified above.

Note that we did not take into account other plausible objectives such as
minimizing energy losses, minimizing the peak-to-average ratio, or minimizing
the amount of storage needed in the system. These objectives would form a
fruitful avenue for future work.

4.2.1 Objective 1 – Maximizing Revenue through Fair Power
Allocation to EV Chargers

We believe that the primary objective of the electric utility will always be to
maximize its revenue3. Assuming that the revenue is a strictly monotone func-
tion of the supplied power, maximizing the revenue is the same as maximizing
the total supplied power. Since the demand of inelastic loads must be met at
all times, a revenue-maximizing strategy is the one that maximizes the total
real power allocated to elastic loads in every time slot4.

There are possibly many feasible revenue-maximizing power allocations
in every time slot, since real power can be distributed among active chargers
in different ways, all having the same total use of real power. We prefer the
allocation that is fair to the connected EVs. As discussed in Section 3.4, it can
be assumed that EV owners are greedy and want to finish charging their EVs
as soon as possible; therefore, at time t, the utility attributed to the EV owner
i is equal to the charge power currently adopted by its charger, pei (t).

A global optimization problem is formulated to maximize the sum of the
logarithm of the utility function for EV owners. This choice of the objective
function guarantees that real power is allocated in a proportionally fair manner
among active EV chargers. Note that the logarithm of the utility function of
each user, i.e., log(pei (t)), is an infinitely differentiable, increasing, and strictly
concave function in its domain, and therefore, the global objective function
is also concave. Also note that the proportionally fair allocation is indeed a
revenue-maximizing allocation. This is an appealing property of proportional
fairness in that it utilizes all available resources.

3 Recall that it is assumed that the utility pays for solar generation even if it is curtailed.
Thus, its revenue only depends on the amount of energy delivered to the customers.
4 We do not take into account the energy that can be charged into storage systems when
defining the revenue-maximizing control strategy for a time slot. This is because this energy
is not actually consumed and will be used at some point to supply loads (with some losses).
Hence, the utility does not increase its revenue in the long run by storing energy in the
distribution network.
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4.2.2 Objective 2 – Minimizing Solar Curtailment

Curtailing solar generation is a forfeiture of inexpensive green energy. This
motivates our choice of minimizing the curtailment of distributed solar gen-
eration, which is equivalent to maximizing the use of solar power, as the
secondary objective of the electric utility. Even when solar generation exceeds
the aggregate demand of a balancing zone the excess energy can be used to
charge storage systems within the same balancing zone. Nevertheless, curtail-
ment cannot be avoided at all times; excess solar generation must be curtailed
when it cannot be stored or exported due to the constraints presented in
Chapter 3. Smart inverters are capable of curtailing solar generation in these
occasions.

Note that there are, in general, many possible ways, i.e., many combinations
of conventional, solar, and stored powers, to deliver the computed maximum
supplied power. This objective forces the selection of the one that uses as
much solar power as available. Hence, it is not redundant given the revenue
maximization objective.

4.2.3 Objective 3 – Minimizing the Use of Conventional
Power

Displacing conventional power supplied by the substation with solar power
produced instantaneously by rooftop PV systems or stored in battery storage
systems in previous time slots reduces the overall cost and carbon emissions of
electricity generation as well as transmission losses. Hence, the utility would
strive to minimize the use of conventional power to improve the power system
efficiency, reduce transmission losses, and comply with external mandates.
The use of conventional power is therefore restricted to when household and
business demands cannot be met entirely by PV and storage systems.

Note that this objective is not redundant given the first two objectives
because conventional power can be displaced with discharged power from
storage systems without having any impact on the first two objectives.

4.3 Optimal Control

This section describes a series of two optimization problems that generate
the optimal control in every time slot, and discusses how the second problem
can be decomposed into a number of decoupled problems. A decentralized
control scheme that solves these optimization problems at two different levels
is proposed in the next section.
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4.3.1 Optimization Problems

A multi-step optimization is required to satisfy the three objectives specified
in Section 4.2 without using an arbitrary scalarization, i.e., a weighted sum
of the objectives. In particular, reducing the use of conventional power is in
conflict with the revenue-maximization objective because it can reduce the
total supplied power; therefore, a two-step optimization is inevitable. These
two optimization problems are discussed next.

4.3.1.1 Revenue-Maximizing Fair Allocation with Minimum Solar
Curtailment

The first optimization problem aims at minimizing the solar curtailment and
maximizing the revenue, while being fair to the active chargers. Since the
first two objective functions of Section 4.2 are not conflicting, it is possible to
optimize them at the same time without introducing weight terms. Specifically,
increasing the use of solar power does not negatively impact the optimal
power allocation to EV chargers. Hence, the optimizer of the sum of these two
objectives is the solution to any weighted sum of these two objectives5.

Assuming that the impedance of the main feeders, real and reactive power
consumption of homes and businesses, the setpoint of feeders and transform-
ers, the available solar power at the point of connection of PV systems, and the
set of active end-nodes and their parameters are known in the beginning of
every time slot, Problem 1 can be posed as a nonlinear optimization problem,
where the control variables are pe(t),pb(t),ps(t),qs(t).

Problem 1: the global power allocation problem
Inputs: pl(t),ql(t), ξ,ps(t), ss,pe(t),pb(t),pb(t), I, E,J ,S

max
pe(t),pb(t),ps(t),qs(t)

∑
i∈E

log(pei (t)) +
∑
i∈J

psi (t) (4.1)

subject to

End-node Constraints (3.4− 3.7)

System Constraints (3.1− 3.3)

Bus Injection Equations (3.8− 3.9)

Power Flow Equations (3.13− 3.15)

5 Nevertheless, algorithmically weight terms are important because they influence how fast
the optimal solution is found.
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Problem 1 is subject to the linearized power flow equations, the real and
reactive power injection equations for buses, the distribution systems con-
straints, and the end-node constraints. Note that this nonlinear optimization
problem is convex as it maximizes a concave function which is the sum of
two concave functions, one linear and one nonlinear, subject to affine equality
constraints and linear and quadratic inequality constraints6 that define a
convex set. Therefore, it has a unique solution. The unique proportionally fair
power allocation to EV chargers in time slot t is represented by p̃e(t), and the
optimal real and reactive power contributions of PV inverters are represented
by p̃s(t) and q̃s(t), respectively. Here the upright boldface letters represent
vectors.

4.3.1.2 Minimizing the Use of Conventional Power

Given p̃e(t), p̃s(t), and q̃s(t), the second optimization problem, called Problem
2, aims at minimizing the power supplied by the grid in a time slot, which can
be written as:

Pgrid(t) =
∑
i∈I

pli(t) +
∑
i∈E

p̃ei (t)−
∑
i∈J

p̃si (t)−
∑
i∈S

pbi (t)

Since the three first terms in the right hand side of this equation are fixed,
maximizing the total power discharged from storage systems minimizes the
use of conventional power supplied by the grid. Given real and reactive
power consumption of homes and businesses, the setpoints of feeders and
transformers, the solution to the first optimization problem, the available
solar power at the point of connection of PVs in each time slot, the set of
active end-nodes, and their parameters, Problem 2 is posed to determine the
optimal control of storage systems. This problem includes only the end-node
constraints that pertain to storage systems (Constraints 4.3 and 4.4) as the
operations of other active end-nodes have been determined already.

As a practical matter, all storage systems located in the same balancing
zone must be either charging or discharging in a given time slot; otherwise,
control may discharge one storage system and use the energy stored in that
system to charge another storage system in the same zone. This would be
neutral in terms of the objective function but would affect the amount of
energy that can be discharged from the storage systems in the future time
slots. Particularly, energy transfer between storage systems that are within
the same zone results in waste of energy due to storage charge and discharge
inefficiencies. To rule out such controls, all storage systems located in the
same zone are forced to either charge or discharge in each time slot, thereby
maximizing the system efficiency implicitly. Let us denote the set of storage

6 The quadratic constraints pertain to the apparent power capacity of solar inverters.
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Problem 2: the global storage problem
Inputs: pl(t),ql(t), ξ, p̃s(t), q̃s(t), p̃e(t),pb(t),pb(t), I, E,J ,S

max
pb(t)

∑
i∈S

pbi (t) (4.2)

subject to

0 ≤ pbi (t) ≤ pbi (t) i ∈ SD (4.3)

−pb
i
(t) ≤ pbi (t) ≤ 0 i ∈ SC (4.4)

System Constraints (3.1− 3.3)

Bus Injection Equations (3.8− 3.9)

Power Flow Equations (3.13− 3.15)

systems that must be charged and the set of storage systems that must be
discharged by SC and SD, respectively, which are defined as:

SC =

{
i ∈ S|Ab

ij = 1, j ∈ BC
}

(4.5)

SD =

{
i ∈ S|Ab

ij = 1, j ∈ BD
}

(4.6)

where BC and BD are balancing zones in which every storage system must be
charged and discharged, respectively. These two sets are defined as:

BC =

{
j ∈ BZ |

∑
i:As

ij=1

p̃si (t) >
∑

i:Al
ij=1

pli(t) +
∑

i:Ae
ij=1

p̃ei (t)

}
(4.7)

BD =

{
j ∈ BZ |

∑
i:As

ij=1

p̃si (t) ≤
∑

i:Al
ij=1

pli(t) +
∑

i:Ae
ij=1

p̃ei (t)

}
(4.8)

Problem 2 can have multiple solutions, each minimizing the use of conven-
tional power. An optimal control for storage systems in time slot t is denoted
p̃b(t).

Observe that Problem 2 is separable because no constraint couples storage
systems that belong to two different balancing zones7. Thus, this problem can
be decomposed into smaller subproblems of the forms (4.9) and (4.10) for
“charging” and “discharging” balancing zones, respectively. These subproblems
are LP. Solving each of these subproblems can be delegated to a controller

7 Line and transformer capacity constraints that are outside balancing zones can be ignored
in Problem 2. This is because storage systems are not charged from the grid due to the third
objective and their optimal control, i.e., the solution of Problem 2, does not overload any
line or transformer if the capacity constraints are ignored because Problem 1 had a feasible
solution.
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installed at the edge of the corresponding balancing zone as discussed in the
next section.

Problem 2-1: the charging balancing zone problem: j ∈ BC

Inputs: pl(t),ql(t), ξ, p̃s(t), q̃s(t), p̃e(t),pb(t),pb(t), I, E,J ,S

max
pb(t)

∑
i∈S

pbi (t) (4.9)

subject to

− pb
i
(t) ≤ pbi (t) ≤ 0 i ∈ SC

System Constraints (3.1− 3.3)

Bus Injection Equations (3.8− 3.9)

Power Flow Equations (3.13− 3.15)

Problem 2-2: the discharging balancing zone problem: j ∈ BD

Inputs: pl(t),ql(t), ξ, p̃s(t), q̃s(t), p̃e(t),pb(t),pb(t), I, E,J ,S

max
pb(t)

∑
i∈S

pbi (t) (4.10)

subject to

0 ≤ pbi (t) ≤ pbi (t) i ∈ SD

System Constraints (3.1− 3.3)

Bus Injection Equations (3.8− 3.9)

Power Flow Equations (3.13− 3.15)

4.4 Multi-Tier Control Architecture

An electric utility may control thousands of PV panels, storage systems, and
EV chargers. Critical to the control scheme are the measurements that are
used as input to the optimization problems. Getting these measurements
requires a measurement infrastructure that can be combined with the control
infrastructure. This calls for the design of an overall architecture that enables
scalable, robust, timely, and secure data transfer between measurement and
control nodes. To this end, a multi-tier control architecture that consists
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of a centralized substation controller that coordinates control with a set of
controllers corresponding to balancing zones is adopted here.

A reliable communication network connects the substation controller to the
balancing zone controllers and to measurement devices installed at all homes
and businesses. These devices measure residential and commercial demands
and the parameters of the active end-nodes, and send them periodically (once
every time slot of length 1 minute) to their upstream controller as illustrated
in Figure 4.2. Specifically, each balancing zone controller receives near real-
time measurements (i.e., with a delay much smaller than 1 second) of the real
and reactive power consumption of inelastic loads, the maximum demand of
active EV chargers, the available real power at PV systems, and the maximum
feasible charge and discharge powers of storage systems from downstream
active end-nodes. The controllers treat these measurements as estimates of
the corresponding values in the next time slot.

Fig. 4.2 A schematic of
the multi-tier control ar-
chitecture showcasing the
substation controller and
two balancing zones with
their controller and mea-
surement devices installed
at the end-nodes. Com-
munication links between
measurement nodes and
upstream controllers are
depicted by dashed arrows.

Decentralized Algorithm Control actions are computed jointly by the sub-
station controller and balancing zone controllers as follows:

Step 1: active end-nodes communicate their latest measurements to the sub-
station controller via their zone controller.

Step 2: the substation controller runs Algorithm 1.
Step 3: every balancing zone controller runs Algorithm 2 upon receiving

control decisions from the substation controller.
Step 4: every active end-node carries out the optimal control received from

its upstream zone controller in the beginning of the next time slot.
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Algorithm 1: Algorithm run by the substation controller
Data: ξij , vmin, vmax, BZ , zij , ss

while true do
Receive recent measurements of pl,ql,ps,pe,pb,pb from end-nodes;
Estimate pl,ql,ps,pe,pb,pb for the next time slot;
Solve Problem 1 for the next time slot;
Send p̃e, p̃s, q̃s to downstream controllers of BZ ;
Wait until the next clock tick;

end

Algorithm 2: Algorithm run by a zone controller
Data: ξij , vmin, vmax, zij , ss

while true do
Receive recent measurements of pl,ql,pb,pb from end-nodes;
Receive computed p̃e, p̃s, q̃s from substation controller;
Estimate pl,ql,pb,pb for the next time slot;
if zone ∈ BC then

Solve Problem 2-1 for the next time slot;
else

Solve Problem 2-2 for the next time slot;
end
Send p̃e, p̃s, q̃s, p̃b to downstream end-nodes;
Wait until the next clock tick;

end

4.5 Benchmarks

To compare the performance of the decentralized control scheme with schemes
that are already used in the field, two fully distributed control schemes (one
that utilizes local storage and one that does not) are used as benchmarks.
These controllers run at individual businesses to control the operation of
active end-nodes that are installed there (i.e., local resources), using local
measurements only. Both schemes aim to limit the output of solar inverters to
meeting the local demand; thus, they curtail solar generation when it exceeds
the aggregate local demand and do not allow sharing within the balancing
zones. These schemes cannot control the reactive power output of inverters
or adjust the charge power of EV chargers because they are not aware of the
distribution network model and also cannot observe voltage and power flow
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at upstream buses. Thus, voltage and congestion problems are still possible
due to the operation of EV chargers. Nevertheless, these schemes serve as
benchmarks for the proposed control scheme as discussed in the next chapter.

In some jurisdictions, less conservative schemes can be used to control the
output of inverters. These schemes permit the export of excess solar generation
to the grid as long as the voltage level at inverters’ point of connection stays
within some bound. These control schemes are not used as our benchmarks
since calculating the voltage at the point of connection of inverters requires
the knowledge of the impedance of secondary distribution lines, which was
not available to us as academic researchers.

4.5.1 Without Local Storage

The first scheme assumes that small businesses do not have dedicated storage
systems, and therefore, solar generation must be curtailed when it exceeds
the aggregate local demand, which is the sum of the demand of the small
business and the maximum demand of the EV charger installed at the small
business. Each controller aims at 1) charging the EV at the maximum rate,
and 2) minimizing solar curtailment from the local PV system, subject to the
constraint that there is no export of real power to the grid. Thus, the controller
implements the following rules in the given order:

pei (t) = pei (t) (4.11)

psi (t) = min{psi (t), pli(t) + pei (t)} (4.12)

To simplify the presentation, it is assumed here that all end-nodes indexed by
i are connected to the small business i.

4.5.2 With Local Storage

The second scheme assumes that storage systems are installed at some small
businesses and can be charged using solar power generated by the local PV
system. However, excess solar production cannot be shared with other loads,
even in the same balancing zone. Each controller aims at 1) charging the EV
at the maximum rate, 2) minimizing curtailment of solar power produced by
the local PV system, and 3) minimizing the use of conventional power from
the grid, subject to the constraint that there is no export of real power to the
grid. Thus, the controller implements the following rules in the given order:
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pei (t) = pei (t) (4.13)

psi (t) = min{psi (t), pli(t) + pei (t) + pb
i
(t)} (4.14)

pbi (t) = min{pbi (t), pli(t) + pei (t)− psi (t)} (4.15)

As before, all end-nodes indexed by i are connected to the small business i.
In the next chapter, we evaluate the performance of our control scheme,

comparing it with these two benchmarks.

4.6 Chapter Summary

Many utilities in Europe and North America are experiencing the effects of
high penetration of distributed PV systems and EVs on their radial distribu-
tion systems. Future distribution systems are anticipated to accommodate
even higher penetrations of these technologies, threatening service reliability,
impairing power quality, and reducing the efficiency of these systems under
existing planning and operation paradigms. The synergy between EV chargers
and PV inverters can be used to cancel out their effects on distribution feeders
and simultaneously achieve the objectives defined by the utilities. An optimal
control framework is proposed from which a decentralized scheme is derived
to control EV chargers, PV inverters, and storage systems that are connected to
low-voltage distribution networks. The proposed control is myopic, relies on
end-node measurements, and requires a model of the distribution network. It
enables power sharing within the balancing zones and is designed to address
potential voltage, reverse flow, and congestion problems in distribution sys-
tems. The next chapter evaluates the efficiency and feasibility of the proposed
control through power flow analysis.



58 References

References

[1] Katiraei F, Sun C, Enayati B (2015) No inverter left behind: Protection,
controls, and testing for high penetrations of PV inverters on distribution
systems. Power and Energy Magazine, IEEE 13(2):43–49



Chapter 5
Evaluation

Abstract This chapter introduces an extensible, platform independent, smart
grid simulation framework that combines discrete event and power flow
simulation building blocks with AMPL, an optimization environment allowing
the use of many commercial solvers. Extensive simulations are then performed
using this framework to confirm that the proposed control scheme satisfies
the operating constraints of the distribution system, and compare its efficiency
with the two benchmark schemes presented in the previous chapter.

5.1 Simulation Framework

Evaluating the mechanisms devised for the control of a vast number of active
end-nodes connected to low-voltage distribution feeders requires a simulation
framework that supports

a) creating large-scale simulation scenarios, each corresponding to a particu-
lar realization of several stochastic processes,

b) jointly simulating the models developed for different aspects of the grid
and the communication between measurement devices, active end-nodes,
and controllers, considering its latency,

c) solving various optimization problems formulated for the grid, and
d) performing (multi-phase) power flow analysis.

Several commercial and open source software packages have been devel-
oped to perform each of these functions; however, no existing software fully
supports the features required for running a large-scale smart grid simula-
tion [5]. It is also not straightforward to piece together off-the-shelf simulators
since they are not necessarily built for the same platform or have compatible
input and output formats. Moreover, it is necessary to update the parameters
of the power system simulator based on optimal control decisions computed
by an external optimizer. This calls for the design of an extensible, platform

59
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independent simulation framework that couples the existing simulators and
numerical computing environments, facilitates the exchange of intermediate
results between these packages, and provides a unified API for defining vari-
ous simulation scenarios. This section presents such a simulation framework.
This framework was originally developed to validate the decentralized con-
trol scheme proposed in Chapter 4; however, it can be used to assess other
schemes aiming to optimize and control distribution grids.

5.1.1 Architecture

Figure 5.1 depicts the simulation framework developed in this work,
which combines a simulation tool for power distribution systems, called
OpenDSS [7], with AMPL R© [2], a powerful optimization environment. The
simulation engine, developed in MATLAB R© [10], coordinates the execution
of these two software systems and provides a simple API which enables the
users to load a test distribution network, upload or generate synthetic EV
mobility and renewable energy traces, create models for loads and active
end-nodes, define a control scheme, run discrete-time simulations, and collect
performance results.
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Fig. 5.1 Architecture of the simulation framework.

Figure 5.2 shows data and control flow between different parts of this
simulation framework. An arrow depicts data/control flow, and a box rep-
resents a MATLAB function, a simple script that initiates some operation in
AMPL or OpenDSS, or a data file stored on the disk. The arrows are numbered
according to their execution order and those that must be executed in every
simulation time slot are labeled with a number followed by ‘t’. Note that this
architecture allows OpenDSS, AMPL solvers, and the simulation engine to run
on different platforms communicating over TCP sockets.
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Fig. 5.2 Data and control flows between components of the simulation framework.

5.1.2 Interactions Between Software Components

Consider a simulation run that involves solving a sequence of optimization
problems in every time slot to determine the optimal control of a certain
population of active end-nodes connected to a power distribution system. The
MATLAB simulator builds the network model, describing the topology of the
distribution system and points of connection of loads and active end-nodes,
and can generate load, solar irradiance, and EV mobility traces based on
some stochastic models. Once the models are loaded and traces are gener-
ated, the simulator creates the network.dss file which contains an OpenDSS-
compilable network model, and several data files of the form problemX-t.dat,
each containing AMPL parameters for an optimization problem, X, in a time
slot, t.

In the next step, AMPL is called to load the optimization problems from
problemX.mod files and assign values to the optimization parameters using
data provided in problemX-t.dat. An AMPL-interfaced solver is then invoked
to solve an optimization problem in a given time slot and append the optimal
solution to the data file pertaining to the next optimization problem of this
time slot, if there is any.

Once the optimization problems are solved for a time slot, the obtained
solutions are used to update the data files corresponding to the next time slot.
Finally, the MATLAB simulator updates the network.dss file with the optimal
solutions, i.e., the control decisions, and calls the compile script in OpenDSS.
The power flow simulator then compiles the distribution network model
defined in network.dss, runs the power flow simulation for every time slot,
and stores bus voltages and branch flows in pf.out. The simulation engine is
notified when power flow simulations end to corroborate the feasibility of the
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control decisions and perform other post-processing steps. This concludes the
simulation run.

5.1.3 Programming Interface

The following functions have been implemented in MATLAB to run a simula-
tion scenario and analyze the results:

Load Traces Read data files from the disk. These files include load profiles
for residential and commercial customers, and randomly generated solar and
EV mobility traces. Note that these traces can either be generated by the
simulator using some models or come from existing data sets.

Define Test System Build the distribution network model and create
network.dss which will be compiled by OpenDSS.

Create AMPL Input Files Create AMPL data files, each describing parameters
of an optimization problem.

Solve Optimization Problems Invoke the solver suitable for solving the
optimization problem in a given time slot.

Update Variables Fetch optimal control decisions found by AMPL, update
variables in the MATLAB environment, and modify the network.dss file.

Run Power Flow Call OpenDSS to preform power flow calculations for every
time slot and write back the complex bus voltages and branch flows.

Analyze Results Examine voltage profiles and branch flows and write the
final results to the disk.

The Bash scripts defined in the AMPL environment are as follows:

Solve Load the optimization problem model from problemX.mod, initialize
its parameters by reading the data provided in problemX-t.dat, configure
the selected solver, solve the optimization problem, and store the optimal
solution.

Update Data Files Append the solution to the data file corresponding to the
next time slot.

Finally, the OpenDSS COM interface provides these methods:

Compile Compile the distribution network model described in network.dss.

Solve Run power flow analysis to compute bus voltages and power flows
given real and reactive power injected or consumed at each bus.
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5.2 Simulation Scenarios

This section describes simulation scenarios that are used in the rest of this
chapter. A scenario describes the number of inelastic loads and active end-
nodes that are connected to each bus of a given distribution network. To obtain
concrete simulation results, it is necessary to make numerous assumptions
about the distribution system. We have tried our best to be as realistic as
possible in the choice of these simulation parameters, recognizing that the
results may change if these parameters are modified. Nevertheless, conclusions
and insights gained from these simulations are relatively insensitive to the
actual parameter choices.

The results of extensive simulations are presented in Section 5.3. For every
penetration level of active end-nodes, 7 simulations are performed using
traces obtained for 7 days in the summer (i.e., one simulation per day), and
the average and the standard deviation of the parameters of interest are
computed across these runs. The length of each time slot is set to 1 minute in
all simulations.

5.2.1 Test Distribution System

The proposed control scheme is evaluated on a variant of the IEEE 13-bus
test feeder [9], which is a three-phase unbalanced radial distribution system
supplied by a 5MVA substation transformer stepping down the voltage from
115kV to 4.16kV. This radial system is modified as explained below. Recall
that the proposed control scheme relies on a model that considers loads and
active end-nodes connected to each phase separately, ignoring the coupling
between phases. However, to understand how far this approach can be pushed,
we evaluate it in Section 5.3 in a three-phase system through power flow
simulations that take into account the coupling between phases.

Figure 5.3 shows primary distribution feeders and buses that comprise
this radial system. A load bus represents a transformer connection where
a distribution transformer supplies a low-voltage distribution network and
downstream household and business loads. It is assumed that each low-voltage
distribution network constitutes a balancing zone, depicted by dashed boxes
in Figure 5.3. Hence, distribution transformers are installed at the edge of
balancing zones. This implies that real power cannot be injected into the
network at load buses (but reverse flows within the balancing zones may
be permitted, depending on the nature of the control scheme). Due to the
lack of a realistic model for low-voltage distribution networks, it is assumed
that demands of end-nodes within a balancing zone are aggregated at the
corresponding load bus. Nevertheless, this approach can be extended to study



64 5 Evaluation

650

632 633 634645646

611

652

684 671

680

692 675

substation

balancing zone

Fig. 5.3 The one-line diagram of our radial test system, where slashes across each line
indicate the number of phases. Balancing zones are depicted by dashed boxes connected to
selected load buses. A low-voltage distribution network within a balancing zone is connected
to each load bus. A communication network that forms a logical tree (dotted lines) over
the distribution system connects the substation controller to balancing zone controllers,
depicted by circles, and also to end-nodes (not represented here).

the entire distribution grid if the low-voltage distribution network model is
available.

In these scenarios the switch between buses 671 and 692 is closed, and
shunt capacitors connected to buses 675 and 611 are switched on at all
times. It is assumed that loads are single-phase connected between a phase
and neutral. The single-phase power flow model discussed in Section 3.3 is
incorporated into the optimization problems; hence, the coupling between
phases is ignored in the computation of optimal controls (though not in
the simulations). To simplify the model of the test system that is used in
these optimization problems, the following assumptions are made: a) the
voltage magnitude at bus 650 is fixed at 4.16kV, b) the substation voltage
regulator tap setting is fixed and known, and c) the 500kVA three-phase
transformer between buses 633 and 634 is replaced with three 167kVA single-
phase transformers. Note that power flow simulations are performed on the
standard test system without making these simplifying assumptions. The
setpoint associated with a line is 90% of its ampacity at 50◦C and the setpoint
associated with a transformer is 90% of its rated capacity. Following current
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practices, bus voltage magnitudes are required to stay within ±5% of the
nominal distribution voltage.

We adopt a plausible layout of loads at the distribution level, which can be
viewed as educated guesses. Table 5.1 specifies how inelastic loads, including
homes and businesses, are connected to the test system, noting that the figures
provided in this table are per phase and node, and EV chargers, PV inverters,
and storage systems are installed only at small businesses. We considered
scenarios with 100, 200, 300, 400, and 500 PV systems and the same number
of storage systems which are distributed in the distribution system according
to Table 5.1.

Table 5.1 Loading condition of simulation scenarios. Simulation scenarios differ in the
total number of PV systems and the total number of storage systems that are connected to
the network.
Bus 680 634 675 645 646 684 652 611
Phase a b c a b c a b c b c b c a c a c
no. inelastic loads 450 450 450 50 50 50 300 300 300 50 50 200 200 50 50 150 150
no. EV chargers 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10
pct. storage 10% 10% 10% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%
pct. PV systems 10% 10% 10% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

A communication network connects the measurement devices installed
at households and businesses with active end-nodes to the controller of the
corresponding balancing zone, and also balancing zone controllers to the
substation controller as depicted in Figure 5.3.

5.2.2 Load Profiles

The test distribution network supplies a total of 3300 households and small
businesses connected to selected buses as described in Table 5.1. It is assumed
that demands of households and small businesses are approximately the
same so we treat them interchangeably. To evaluate the decentralized control
algorithm and examine its impacts on fast timescale dynamics of the grid,
high-frequency electricity demand data of a large number of households are
required. However, this data set is not publicly available owing to regulations
that prevent utilities from sharing fine-grained current measurements from
individual premises. Therefore, synthetic load profiles are used for the purpose
of simulation. In particular, the load profiles are generated using the Markov
models developed in [3] for household electricity consumption during on-
peak, mid-peak, and off-peak periods. These models are derived from fine-
grained measurements of electricity consumption in 20 Ontario homes over
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four months. A 1-minute time resolution is chosen for synthesizing the load
profiles to match the time resolution of our solar traces.

Fig. 5.4 The Ontario de-
mand (5-minute resolution)
in the first week of July
2014.
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Using identical Markov models to generate the load profile of all homes
and businesses results in a relatively smooth substation load during on-peak,
mid-peak, and off-peak periods. However, the load abruptly changes at period
boundaries. To avoid these abrupt transitions, we modulate the mean power
consumption levels of our reference Markov models in every time slot such
that the aggregate load at the substation resembles the Ontario demand in
the first seven days of July 2014, which is shown in Figure 5.4. Specifically, a
correction factor is computed for every time slot by comparing the sum of all
load profiles with the Ontario demand. The consumption level of all loads in
every time slot is then multiplied by the correction factor computed for that
time slot. This eliminates the abrupt changes.

The reactive power consumption of every home or business is assumed to
be 30% of its real power consumption in every time slot. This corresponds to
a power factor of about 0.95 at the loads, which is typical for residential loads.
Power flow calculations indicate that the peak demand of inelastic loads at
the substation is 4.50MW and 4.23MW with and without losses, respectively.
Thus, distribution losses amount to approximately 6% of the demand. It also
shows that the substation transformer is not congested over the simulation
interval, in the absence of the active end-nodes.
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5.2.3 Solar Traces

Lacking high resolution solar data from Ontario, we obtained one-minute
solar irradiance data for the week of July 1 to July 7, 2003 from the Southern
Great Plains atmospheric radiation measurement site in north-central Okla-
homa [12], as shown in Figure 5.5. This data set is used as a reference to
generate solar traces for the installed panels. Specifically, the reference is
scaled up such that the peak available power of a single PV installation is
uniformly distributed in the range 4-5kW, which is reasonable for a rooftop
solar system, while the rated apparent power capacity of PV inverters is set
to 5kVA. Simulations are carried out for 100, 200, 300, 400, and 500 panels
which are distributed in the network as described in Table 5.1.

Fig. 5.5 Solar irradiance
data from a measurement
site in Southern Great
Plains.

5.2.4 Storage

Storage systems are assumed to be installed at every small business with a PV
installation so that the excess solar generation can be stored locally. Hence,
the number of storage systems is always equal to the number of PV systems
in every simulation scenario. Table 5.1 describes the distribution of storage
systems in the test system. The maximum charge and discharge powers of
storage systems are set to 10kW, their capacity is set to 5kWh, and their
charge and discharge efficiencies are assumed to be 95%. At the beginning of
every simulation, the SOC of all storage systems is assumed to be zero.
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5.2.5 EV Model

Table 5.1 describes how 200 Level 2 EV chargers are connected to load buses.
It is assumed that EV chargers are only installed at businesses (and not at
homes) that also have PV installations and storage systems1. A maximum of
one EV is connected to each charger at a time, a Level 2 charger imposes a
maximum load of 7.2kW on the distribution network, the capacity of an EV
battery is 24kWh (i.e., the capacity of a Nissan Leaf [11]), its charge efficiency
is 95%, and the SOC of all EVs is 0.5 upon arrival. Hence, the initial energy
demand of every EV is 12kWh.

It is assumed that EVs arrive and connect to the chargers (located at
businesses) every day starting from 8am, following a Poisson distribution
with parameter µ = 200

90 = 2.2 arrivals per minute. Poisson arrivals have also
been used by other work in the literature [4]. It is also assumed that EVs
disconnect from the chargers 8 hours after their arrival. Thus, the number
of active chargers varies over time starting from 0 at 8am, rising to the full
number by approximately 9:30am and starting to decline at 4pm, reducing to
0 by approximately 5:30pm.

5.3 Results

To examine the effects of uncontrolled EV charging and solar generation,
power flow simulations are performed on the modified IEEE 13-bus test
system in Section 5.3.1 and Section 5.3.2, respectively. Distribution network
problems that arise in these cases motivate the design of a scheme that
jointly controls EV chargers, PV inverters, and storage systems to achieve
the utility-defined objectives, while addressing these problems. Section 5.3.3
validates the feasibility of the proposed control through power flow analysis,
and quantifies the benefits of sharing and using storage within a balancing
zone by comparing the efficiency of the decentralized control scheme with
the two benchmarks defined in the previous chapter.

The integrated simulation framework presented in Section 5.1 is used to
perform simulations for the specific scenarios that are described earlier. It
is worth noting that all simulations are preformed on a dedicated optimiza-
tion server with a 12-core processor and 500GB of memory, and CPLEX R©

and MINOS solvers are employed to solve the linear and nonlinear convex
optimization problems described in Section 4.3. The OpenDSS simulator is
configured to automatically control tap settings in power flow simulations to

1 The only exception is the scenario in which there are 100 PV panels and 100 storage
systems; hence, PV panels are fewer than EV chargers. In this scenario, the other 100 EV
chargers are installed at randomly selected businesses.
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limit voltage fluctuations, as would be the case in normal operation, unless
otherwise stated.

5.3.1 The Effect of Uncontrolled EV charging

We first consider the case where only 200 EV chargers (and no PV or storage
systems) are installed at small businesses, as described in Table 5.1. Hence, the
distribution substation serves 3300 homes and businesses and 200 chargers in
this case. Two uncontrolled EV charging scenarios are studied here; the first
scenario assumes that all chargers are Level 1 (a maximum load of 1.8kW per
charger) and the second one assumes that all of them are Level 2 (a maximum
load of 7.2kW per charger). In both scenarios chargers start charging at their
maximum rate upon arrival of vehicles.
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Fig. 5.6 The effect of uncontrolled Level 1 and Level 2 EV charging on the substation
transformer load.

We run power flow analysis for both scenarios to obtain branch flows and
bus voltages. Figure 5.6 shows the effect of uncontrolled EV charging on
the substation transformer loading in both scenarios in the first day of our
simulation. It can be seen that uncontrolled charging of EVs in the Level 2
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charging scenario overloads the substation transformer once most chargers
become active. Should Level 1 charging be adopted, the transformer loading
does not exceed its nameplate rating. However, Level 1 charging extends
the average charging time from 100 minutes to 400 minutes (which is still
acceptable). Expectedly, uncontrolled charging of EVs does not result in
reverse power flow in both scenarios.

Table 5.2 Voltage magnitudes (p.u.) per phase and node for uncontrolled EV charging
scenarios without optimizing voltage regulator tap settings. Voltage limit violations are
printed in boldface.

200 L1 chargers 200 L2 chargers
max min max min

650a 1.000 1.000 1.000 1.000
650b 1.000 1.000 1.000 1.000
650c 1.000 1.000 1.000 1.000
632a 1.038 1.025 1.038 1.021
632b 0.985 0.969 0.985 0.968
632c 1.046 1.025 1.046 1.015
671a 1.025 0.998 1.025 0.992
671b 0.983 0.959 0.983 0.959
671c 1.036 0.998 1.036 0.980
680a 1.020 0.990 1.020 0.982
680b 0.980 0.953 0.980 0.953
680c 1.031 0.990 1.031 0.971
633a 1.038 1.024 1.038 1.019
633b 0.984 0.968 0.984 0.967
633c 1.046 1.024 1.046 1.013
634a 1.033 1.018 1.033 1.008
634b 0.979 0.962 0.979 0.956
634c 1.042 1.018 1.042 1.002
692a 1.025 0.998 1.025 0.992
692b 0.983 0.959 0.983 0.959
692c 1.036 0.998 1.036 0.980
675a 1.023 0.995 1.023 0.989
675b 0.982 0.956 0.982 0.956
675c 1.035 0.996 1.035 0.977
645b 0.978 0.959 0.978 0.955
645c 1.042 1.019 1.042 1.007
646b 0.974 0.954 0.974 0.949
646c 1.040 1.015 1.040 1.004
684a 1.023 0.995 1.023 0.988
684c 1.034 0.995 1.034 0.974
652a 1.018 0.988 1.018 0.979
611c 1.033 0.993 1.033 0.971

We now focus on the impact of uncontrolled charging on voltage profiles.
One aspect we need to take into account is that voltage drop along the feeder
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can be remedied by careful choice of the voltage regulator tap position. To
study this, we compare the voltage drop when tap positions can and cannot
be changed every minute. First consider the case where regulator taps cannot
be controlled at a fast timescale. In this case, the taps need to be fixed to a
position at which bus voltages will remain within the tolerance limits over
the simulation interval, when the grid only supplies household and business
demands. We specifically use the tap setting +8, neutral, and +10 (each step
is 0.625%) for phase a, b, and c, respectively, which is a plausible setting for
this loading condition. Table 5.2 shows the minimum and maximum voltage
levels recorded in our power flow simulations for both scenarios. It can be
seen that uncontrolled Level 2 EV charging results in undervoltage at bus 646.
Should tap operations be permitted as fast as once per minute (or several
minutes) to restore load voltage to normal, simultaneous charging of the
entire EV population would not result in any voltage problem in both scenarios.
Nevertheless, this would cause excessive wear on the voltage regulator, which
translates into higher operation and maintenance costs, and is therefore not
desirable [1, 14].

5.3.2 The Effect of Uncontrolled Solar Generation

We now study the case where a certain population of PV panels is installed
at small businesses, as described in Table 5.1. We assume that no storage
or EV charger is installed in this network, PV inverters only produce real
power, their real power output is not throttled by the operator, and excess
solar generation can be transferred to loads in the same balancing zone. We
gradually increase the number of PV installations from 0 to 500 (0–15%
penetration) and perform power flow studies for each case. Note that, in
some jurisdictions, even in 2014, a penetration rate of 20% has already been
achieved [13].

We first focus on the impact of uncontrolled solar generation on voltage
profiles. Similar to the case of uncontrolled EV charging, we assume that
regulator taps cannot be controlled on a fast timescale. We fix the taps using
the same setting described in Section 5.3.1. Table 5.3 shows the minimum and
maximum voltage levels recorded in our power flow simulations. It can be
seen that overvoltage occurs at several buses, such as 634 and 645, when the
number of PV installations exceeds 400. Should tap operations be permitted
as fast as once per minute, our studies show that voltage does not increase
beyond the permissible threshold at these penetration rates, even in the case
of 500 PV systems. Again, recall that voltage regulators are meant to be
controlled infrequently and this would cause excessive wear on them.
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Table 5.3 Voltage magnitudes (p.u.) per phase and node for uncontrolled solar generation
scenarios without optimizing voltage regulator tap settings. Voltage limit violations are
printed in boldface.

100 PVs–3% 200 PVs–6% 300 PVs–9% 400 PVs–12% 500 PVs–15%
max min max min max min max min max min

650a 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
650b 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
650c 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
632a 1.038 1.025 1.038 1.025 1.038 1.025 1.040 1.025 1.041 1.025
632b 0.985 0.969 0.985 0.969 0.985 0.969 0.987 0.969 0.989 0.969
632c 1.046 1.025 1.046 1.025 1.049 1.025 1.053 1.025 1.056 1.025
671a 1.025 0.998 1.025 0.998 1.025 0.999 1.026 0.999 1.028 0.999
671b 0.983 0.959 0.983 0.959 0.983 0.959 0.983 0.959 0.984 0.959
671c 1.036 0.998 1.036 0.998 1.041 0.998 1.047 0.998 1.053 0.998
680a 1.020 0.990 1.020 0.990 1.020 0.990 1.021 0.990 1.023 0.990
680b 0.980 0.953 0.980 0.953 0.980 0.953 0.980 0.953 0.981 0.953
680c 1.031 0.990 1.031 0.990 1.036 0.990 1.043 0.990 1.049 0.990
633a 1.038 1.024 1.038 1.024 1.038 1.024 1.040 1.024 1.041 1.024
633b 0.984 0.968 0.984 0.968 0.985 0.968 0.987 0.968 0.989 0.968
633c 1.046 1.024 1.046 1.024 1.049 1.024 1.053 1.024 1.056 1.024
634a 1.033 1.018 1.034 1.018 1.037 1.018 1.039 1.018 1.042 1.018
634b 0.979 0.962 0.981 0.962 0.984 0.962 0.987 0.962 0.990 0.962
634c 1.042 1.018 1.043 1.018 1.048 1.018 1.053 1.018 1.058 1.018
692a 1.025 0.998 1.025 0.998 1.025 0.999 1.026 0.999 1.028 0.999
692b 0.983 0.959 0.983 0.959 0.983 0.959 0.983 0.959 0.984 0.959
692c 1.036 0.998 1.036 0.998 1.041 0.998 1.047 0.998 1.053 0.998
675a 1.023 0.996 1.023 0.996 1.023 0.996 1.025 0.996 1.027 0.996
675b 0.982 0.956 0.982 0.956 0.982 0.956 0.982 0.956 0.983 0.956
675c 1.035 0.996 1.035 0.996 1.040 0.996 1.046 0.996 1.052 0.996
645b 0.978 0.959 0.978 0.959 0.980 0.959 0.983 0.959 0.986 0.959
645c 1.042 1.019 1.042 1.019 1.046 1.019 1.051 1.019 1.053 1.019
646b 0.974 0.954 0.974 0.954 0.977 0.954 0.980 0.954 0.983 0.954
646c 1.040 1.015 1.040 1.015 1.044 1.015 1.048 1.015 1.052 1.015
684a 1.023 0.995 1.023 0.995 1.023 0.996 1.025 0.996 1.027 0.996
684c 1.034 0.995 1.034 0.995 1.040 0.995 1.047 0.995 1.054 0.995
652a 1.018 0.988 1.018 0.988 1.019 0.988 1.022 0.988 1.025 0.988
611c 1.033 0.993 1.033 0.993 1.040 0.993 1.047 0.993 1.054 0.993

As we expected, distribution lines and transformers are not overloaded
in these simulations because distributed solar generation reduces their load.
Instead, reverse flow is observed at buses 634, 645, and 684 when the number
of PV installations exceeds 200. Figure 5.7 shows the effect of uncontrolled
solar generation on the substation transformer load for different penetration
rates and the direction of power flow at bus 634 in the case of 500 PV systems.
It can be seen that the net load decreases drastically during the day when solar
power is available and ramps up again in the evening; this is widely known as
the ‘duck curve’ [6]. Furthermore, it can be seen that real power flows from
bus 634 towards bus 632 in most time slots when the sun is shining. This
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Fig. 5.7 The effect of solar generation with uncontrolled inverters on the substation trans-
former load for different PV penetration rates for a typical day.

reverse flow can cause severe problems discussed in [8, 15]. Interestingly,
most EVs are connected to chargers at small businesses in this time interval,
suggesting that the synergy between EV chargers and PV inverters could
enhance power system reliability and address network problems that are
likely to occur at high EV and PV penetration rates. This motivates the design
of the proposed control scheme.

5.3.3 Evaluating the Proposed Control

This section compares the decentralized control scheme with the two bench-
mark schemes defined in Section 4.5. Recall that in all three schemes, both
EVs and PV systems are present. In the benchmark schemes, only local obser-
vations are used to make control decisions, whereas in our scheme, a central
controller coordinates decisions. Moreover, in the benchmark schemes, PV
panels are not allowed to inject power into the balancing zone, but in our
scheme, power sharing is allowed within each balancing zone. Figure 5.8
shows the total available solar power and the total real power output of PV
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inverters for different control schemes, when 100 PV panels and 100 storage
systems are connected to the test distribution network. It can be seen that
with the decentralized control it is possible to use all of the solar energy
available in every time slot. This is because excess solar generation can always
be stored or consumed by loads that are in the same balancing zone at this PV
penetration rate. Observe, also, that the two benchmark schemes use much
less solar power due to curtailment, especially when storage is unavailable.
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Fig. 5.8 Total power output of PV inverters over a day for different control schemes in the
case that 100 PV panels are deployed in the distribution network.

When the number of PV installations (and the number of storage systems)
increases to 400, the decentralized scheme would have to curtail solar genera-
tion in some time slots to prevent reverse flow and maintain voltage within
the bounds2. This can be seen in Figure 5.9, where after all the EVs have been
charged, no more than 0.4 MW of solar capacity can be used. In contrast, our
control results in much less curtailment compared to the other two schemes
as shown in Figure 5.10. The same observation is made when the number of
PV installations increases to 500.

2 We attribute abrupt changes in the total real power output of PV inverters when our
control is implemented to changes in the number of active chargers, load fluctuations,
reverse flow restrictions, and storage capacity constraints.
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Fig. 5.9 Total power output of PV inverters over a day for different control schemes in the
case that 400 PV panels are deployed in the distribution network.

We now compare the performance of the proposed control scheme in two
cases, where storage is available and unavailable, with the two benchmark
schemes. Figure 5.10 shows that the average amount of solar energy curtailed
by different schemes over the period of a day. The proposed control does not
result in solar curtailment when there are fewer than 300 PV/storage systems,
or when there are fewer than 200 PV systems (but no storage). Even when the
number of PV installations increases to 400 and 500, respectively, the proposed
control results in, on average, 90.9% and 78.3% less curtailment compared
to the first local control scheme, and 85.3% and 65.7% less curtailment
compared to the second local control scheme. Furthermore, simulation results
suggest that sharing is more effective in reducing curtailment than using even
5kWh storage per PV location. This result is very insightful for electric utilities
in that sharing is cost-free unlike expensive storage systems.

Control schemes can also be compared in terms of their use of conventional
power supplied by the grid. Figure 5.11 shows that the proposed control
scheme reduces the use of conventional power (by up to 5%) by displacing
it with solar power. Note that the studied control schemes are similar in
terms of the energy supplied to EVs since all of them manage to fully charge
EVs before they leave in our simulation scenarios. However, if the EVs left
earlier (for example after 6 hours instead of 8 hours), the proposed scheme



76 5 Evaluation

100PVs 200PVs 300PVs 400PVs 500PVs
0

1

2

3

4

5

6

7

8

9

10

PV Installations

C
ur

ta
ile

d 
S

ol
ar

 E
ne

rg
y 

(M
W

h)

 

 

Our scheme w/ storage
Our scheme w/o storage
Local use w/ storage
Local use w/o storage

Fig. 5.10 Average solar energy curtailed by different control schemes over the period of a
day (lower is better). Error bars represent one standard error.
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Fig. 5.11 Average use of conventional energy by different control schemes over the period
of a day (lower is better). Error bars represent one standard error.
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would allocate power to connected EVs in a proportionally fair manner, while
benchmark schemes would not provide fairness and could result in starvation.

Finally, power flow studies find that the proposed open-loop controller does
not cause any voltage, congestion, or reverse flow problem in all simulation
scenarios. As an example of the resulting operation, Figure 5.12 shows the
substation loading over the first day of our simulation. It can be seen that
our control successfully prevents overloads, confirming that using setpoints
that are 10% below the nameplate ratings is sufficient to compensate for inac-
curacies of the simplified DistFlow model3. We caution that, we did see that
higher equipment setpoints, e.g., setting them equal to the nameplate ratings
and 5% below the nameplate ratings, often led to infeasible optimization
problems. Thus, the results are sensitive to the choice of using 90% of the
rated equipment capacity as the setpoint.
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Fig. 5.12 Substation transformer loading over a day for 200 EV chargers and different PV
and storage penetration rates using the proposed control.

3 Electric utilities have a rough estimate of resistive losses in their distribution circuits,
enabling them to appropriately choose the equipment setpoints.
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5.3.3.1 Scalability of the Proposed Control Scheme

This section briefly discusses scalability of the proposed control scheme. The
optimal control is computed efficiently (in less than 1 second) on a single
machine in scenarios with less than 400 PV installations and 400 storage
systems. However, should the number of active end-nodes increase even
further, solving the first (substation level) optimization problem takes up to
30 seconds, while the second (balancing zone level) optimization problem
is still solved efficiently, in less than a few seconds. This implies that a fully
distributed control scheme in which decision making is delegated to the end-
nodes might be required to control active end-nodes when their penetration
increases to a certain level. The design of this scheme is quite complex and
requires exploiting the hidden decomposition structure of the optimization
problems.

5.4 Chapter Summary

Assessing the advanced optimization and control schemes developed for power
systems requires an integrated simulation framework capable of performing
power flow analysis, solving the underlying optimization problems in a de-
centralized manner, and simulating arrivals and departures of EVs and the
communications between measurement devices, controlled nodes, and con-
trollers. A powerful smart grid simulator that performs all these functions is
introduced in this chapter and is used later to validate the decentralized con-
trol scheme developed in Chapter 4. It is shown through extensive simulations
and power flow studies on a radial test system that this scheme successfully
addresses voltage, reverse flow, and congestion problems, allocates available
power in a proportionally fair manner among active EV chargers, harnesses
as much solar energy as possible using storage and sharing, and minimizes
the use of conventional power. Moreover, simulation results corroborate that
the decentralized control scheme, which stores and shares solar generation
within balancing zones, significantly reduces solar curtailment compared to
the benchmark schemes.
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Chapter 6
Conclusion

Abstract The focus of this brief has been on a control framework for active
end-nodes to mitigate emerging operational and technical problems and
fulfill various environmental, societal, and business objectives. This chapter
summarizes the achieved goals, highlights the limitations of this framework,
and suggests several avenues for future work.

6.1 Summary of Achieved Goals

This brief investigated the challenges of integrating variable-power DER, such
as renewable energy systems and storage technologies, and high-power elastic
loads, such as plug-in electric vehicles, into low-voltage distribution grids
and the pivotal role of information and communications technology (ICT) in
overcoming these challenges. Leveraging low-cost broadband communications
and pervasive monitoring of the end-nodes in distribution networks, a con-
trol framework is proposed to solve multi-objective multi-constraint control
problems in quasi real-time. A decentralized control mechanism capable of
simultaneously achieving various user-level and system-level objectives is
then developed as an extension of the mechanisms that are currently in place
for balancing the grid. This is a nontrivial task as these objectives are often
competing.

In particular, the synergy between solar PV generation and EV chargers
is used to tackle distribution system problems, increasing the degree of pen-
etration of both PV systems and EVs that can be reliably accommodated in
existing power systems. The active end-nodes are controlled using a decen-
tralized scheme that solves linearized power flow equations using real-time
measurements of the demand of inelastic loads and the state of the active end-
nodes. Since the underlying optimization problems are convex, the optimal
control can be found both quickly and efficiently. This control scheme is fair to
active EV chargers, and permits sharing of solar power and the use of storage

81



82 6 Conclusion

systems within a balancing zone, thereby reducing solar curtailment and the
use of conventional power from the grid. It has been shown using numerical
simulations, which are based on realistic load and solar generation traces
and stochastic EV arrivals and departures, that this control outperforms the
schemes that limit solar generation to the local demand in terms of solar cur-
tailment and conventional energy use. The power flow analysis confirmed that
the proposed control does not cause overloads, overvoltage and undervoltage
conditions, or reverse flows as long as the setpoints are selected judiciously.

The control framework proposed in this work is inspired by the design of
well-established resource allocation and flow control algorithms that have
been originally developed for the Internet. For example, the notion of propor-
tional fairness often used in scheduling problems has been extended to the EV
charging problem.

6.2 Limitations and Future Work

This section presents existing challenges and limitations of the proposed
control framework that could be addressed in future work.

6.2.1 TCP-Style Control for Active End-Nodes

In Chapter 4, exploiting real-time measurements of the demand of inelastic
loads and the state of active end-nodes, two optimization problems are solved
to obtain the optimal control in every iteration. Unlike the second optimization
problem which is decomposed and solved independently for each balancing
zone, the first optimization problem cannot be solved in a fully distributed
fashion. This is because some constraints, such as the simplified DistFlow
equations, couple the active end-nodes connected to different balancing zones.
Thus, the proposed algorithm for solving the first problem does not scale
with the size of the distribution network and the number of active end-nodes.
Specifically, we have seen that solving the first optimization problem takes
several seconds once the number of PV systems and the number of storage
systems exceed 400.

What is needed is a TCP-like feedback control mechanism for active end-
nodes. A potential solution, similar to what has been done in [1], would
be to decompose the centralized optimization problem, which relates real
and reactive power injections to bus voltages, into several subproblems, each
solved independently by an active end-node. The decoupled problems are co-
ordinated by a master problem using Lagrangian multipliers [3]. This makes it
possible to develop a simple feedback control mechanism for active end-nodes
based on in-network rather than end-node measurements. Control would be
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fully distributed and is therefore more scalable compared to the proposed
open-loop control mechanism. Designing this control mechanism is compli-
cated because there are many coupled variables and coupling constraints.

6.2.2 Generalizing to Unbalanced Multi-Phase Distribution
Systems

The power flow equations are solved separately for each phase of the distri-
bution network to obtain optimal control decisions. However, distribution
networks are usually unbalanced and ignoring the coupling between different
phases introduces some error into our analysis. A possible direction for future
work is to substitute this model with a distribution power flow model for un-
balanced multi-phase networks, similar to the linear approximation proposed
in [2] or the generic distribution power flow model proposed in [4].

Note that loads are typically modelled as voltage dependent components in
distribution systems. To simplify power flow calculations, a constant complex
power load model is used in Chapter 4. A better load model is also a fruitful
avenue for future work.

6.2.3 Optimizing Capacitor Banks and Load Tap Switching
Operations

Conventional distribution system operation has been chiefly concerned about
voltage and reactive power control using local measurements with distribu-
tion loss minimization being the operational objective in most cases. This is
generally achieved by solving a distribution optimal power flow problem to
control operations of transformer LTCs and switched capacitors [4].

Recall that the optimization problems solved in Chapter 4 to compute
optimal control of active end-nodes also involves power flow calculations
for the distribution system. This indicates the possibility of incorporating
transformer LTCs and switched capacitors into our control problem to jointly
optimize operations of EV chargers, solar PV inverters, storage systems, and
switching of taps and capacitor banks. A similar approach has been taken
in [5] to control EV chargers and taps and capacitor switching decisions. The
main challenge here is that active end-nodes, and LTCs and capacitors must
be controlled on two different timescales; thus, combining them into a single
control problem requires careful consideration of the control timescales.
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6.3 Concluding Remarks

The increasing penetration of elastic loads and distributed renewable gen-
eration, along with the introduction of measurement, communication, and
control technologies in power distribution systems has several implications.
Specifically, pervasive measurement and communication increases interactions
between customers, system operators, and independent producers, providing
new opportunities to improve reliability, as well as cost and carbon efficiency
of the grid. Additionally, the integration of active end-nodes into low-voltage
residential distribution networks enables the introduction of several new
environmental, societal, and business objectives for which the grid has not
been designed originally. Control, especially in the last mile of the distribution
network, plays a key role in accomplishing these goals. However, existing grid
controls are incapable of solving multi-objective multi-constraint problems
that involve a large number of active end-nodes and new control solutions
have not been defined yet to achieve recently introduced objectives of the
active end-nodes. This work attempted to fill this gap in the literature by
developing a decentralized algorithm for the control of active end-nodes in
quasi real-time.

Despite the novelty of this approach, it has certain limitations. Firstly, the
proposed control scheme could result in suboptimal or infeasible control
decisions in unbalanced, three-phase radial and mesh distribution systems.
Secondly, it relies on power flow calculations to obtain a feasible control, and
therefore, assumes the knowledge of the system admittance matrix, which
might not be available in some cases. Lastly, the substation controller is still a
bottleneck, limiting the scalability of the control algorithm. These limitations
present ample opportunities for future work.
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