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Abstract—In this paper, a Past-Aware State Estimation (PASE)
method (for static state estimation) is proposed for power dis-
tribution systems that takes previous estimates into account to
improve the accuracy of the current one, using an Ensemble
Kalman Filter (EnKF). Fewer phasor measurements units (PMU)
are needed to achieve the same estimation error target than
snapshot-based methods. Furthermore, contrary to existing meth-
ods, the proposed approach does not embed power flow equations
into the state estimator, thus making it a versatile technique. The
theoretical formulation of the EnKF-based PASE presented in the
paper has been validated considering a 33-bus distribution system
and using power consumption traces from real households.
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mation, ensemble Kalman filter, phasor measurement unit, state
estimation.

I. INTRODUCTION

STATE estimation in power distribution systems is a critical
tool for ensuring a secure, reliable, and optimal perfor-

mance of the system, and some utilities have already began
rolling-out their implementation and use [1]. Well understood
in transmission systems, static state estimation is now an
area of active research in distribution networks. While several
snapshot-based approaches have been used to solve this prob-
lem, only a few solutions have been proposed in a filtering-
based framework; this paper focuses on static state estimation
in distribution systems based on a filtering method.

The state of a power system can be completely defined from
the knowledge of all bus voltage magnitudes and angles at
time t [2]; typically in transmission systems, state estimation
is carried out based on measurements of variables such as
the voltage magnitudes and angles1, available from Phasor
Measurement Units (PMUs); power injections and power flows
are commonly used as well.

At the transmission level, state estimation is traditionally
carried out using a snapshot-based weighted least square
(WLS) method which relies on high quality measurement
data from PMUs [2]. However, transmission systems generally
have a limited number of buses and are equipped with many
measurement devices since it is important to precisely monitor
and control the system at all times. On the other hand,
distribution systems comprise a large number of buses with
little measurements available. While PMUs are not yet widely
available at the distribution level, it is expected that they will
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1While phase angles are generally available, not all utilities have updated
their state estimation software to use them.

become more prevalent in the future. Indeed several recent
studies have focused on developing low-cost, easy to deploy
PMUs [3], [4]. It is nonetheless not practical to install PMUs at
every distribution bus. If PMUs were to be placed at selected
buses only, there would be infinitely many solutions to the
DSSE problem. In order to reduce the number of possible
solutions, pseudo-measurements can be used [5], which are
load forecasts computed ahead of time to aid DSSE in finding
a “good” solution. Typically, a pseudo-measurement at a given
load bus comprises an estimate of the expected active and
reactive power consumptions at the bus. Load forecasting at
the distribution level is difficult, hence pseudo-measurements
are usually of poor quality. These fundamental differences be-
tween transmission system state estimation and DSSE, and the
need for affordable solutions, mean that new state estimation
approaches are needed for distribution systems.

Many studies have extended the WLS approach from trans-
mission to distribution systems. A review of literature on the
different state estimation techniques and their application to
DSSE problems is presented in [6]. One of the first applications
of the snapshot approach to the DSSE problem was reported
in [7], where a probabilistic formulation based on pseudo-
measurements was used. In [8], the power-flow equations were
linearized and a computationally friendly solution method was
proposed. The authors also showed that PMUs are needed for
accurate state estimation. Compressed sensing theory was used
for state estimation with sparse measurements in [9], while
[10] used line-current magnitudes and angles. Finally a semi-
definite programming approach was used to solve the DSSE
problem in [11].

Several researchers have used Kalman filters in state estima-
tion problems for transmission systems [12]. However, in dis-
tribution systems, the poor quality of the pseudo-measurements
renders such methods ineffective. Therefore, very few Kalman
filtering based methods have been developed for DSSE and
none improve over the WLS. Huang et al. compared the
extended Kalman filter to the unscented Kalman filter in [13].
From the reported results it was noted that there was no
visible improvement in performance of the Kalman filter based
methods over WLS. In [14] the impact of choice of the model
and measurement covariance matrix on the performance of the
extended Kalman filter was examined. It was noted from the
results that the proposed filtering approach did not result in
any performance improvement. The above discussed Kalman
filter based approaches apply the methods directly from the
transmission to distribution systems. The problem of poor
quality of pseudo-measurements is alleviated by assuming that
measurements are available at every bus in real-time or quasi-
real-time, usually from synchronized smart-meters, which is
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not realistic2.
In a snapshot-based context where the state at time t is

computed independently of the estimates at times anterior
to t and where the measurement errors are independent,
identically distributed and follow a Gaussian distribution, the
WLS objective function provides the best performance possible
(excluding ill-conditioned cases) [15]. Such an estimator is
referred to as the State of the Art (SoA) in this paper, for the
purpose of comparison.

In this paper, a past-aware method for DSSE, named PASE
(Past-Aware State Estimation), where the estimate at time t de-
pends on anterior estimates and based on the Ensemble Kalman
Filter (EnKF) [16] is presented. Applying the EnKF to this
problem is non-trivial, since measurements from sources with
different time-scales must be merged. Contrary to WLS and
other approaches using different variations of the Kalman filter,
the proposed PASE approach does not embed the power flow
equations into the estimator, making it a versatile technique.
Instead it relies on an external power-flow solver, which is left
to the choice of the operator. This paper focuses on overcoming
the challenges related to filtered state estimation and analyzing
when using a filtered approach is beneficial. An analytical
method for estimating the performance gain brought about
by PASE over the SoA in a time-efficient way is introduced
as well, which reduces the need for expensive Monte-Carlo
simulations.

In view of the above discussions, the main contributions of
this work are:
• A maiden attempt is made to apply EnKF to a power

distribution system sparsely monitored by PMUs for
state estimation.

• An analytical framework is developed to evaluate the
performance of PASE.

• The theoretical results are validated via extensive simu-
lations on a 33-bus distribution system [17] using power
consumption traces from real households.

• The performances of the proposed PASE approach and
WLS are compared and engineering insights are pre-
sented to understand the impact of each decision variable
on the performance of PASE, as well as the trade-offs
to make.

Based on the above discussions, the main message of this
work is that PASE is the first technique to improve upon the
SoA. It does so significantly when the elapsed time between
two consecutive state computations is small (less than 15
minutes), i.e., less PMUs are needed to achieve the same
estimation error.

The rest of the paper is organized as follows. The back-
ground and assumptions are presented in Section II. The SoA
method is presented in Section III and the proposed PASE
solution in Section IV. The validation results are reported in
Section V. Finally, the conclusions are drawn in Section VI.

2Indeed currently available smart-meters typically report energy consump-
tions once a day, at the end of the day, with a typical granularity of 15 minutes
(other granularities such as 5, 30 or 60 minutes for example can also be found).
Making the smart meters report their measurements more often (e.g., every
15 minutes) will impact their cost.

II. SYSTEM AND ASSUMPTIONS

In order to demonstrate the performance of the proposed
DSSE method, the distribution system is assumed to be three-
phase balanced, and operating under normal conditions. Also
that, the DSSE problem is being solved by the local distribution
company (LDC) using an appropriate computational platform.
The following information are necessary in order to implement
the DSSE, both with the SoA method and the proposed PASE
method.

Computational timescale: A new state estimate is com-
puted every ∆T . Typically in transmission systems, time-
step of 1 min or less are considered [18], [19]. However, in
distribution systems smaller time-steps are needed because of
higher load volatility, which can arise, for example, with high
penetration of renewables. The value of ∆T has an impact
on the computational burden. In this work, time-steps from 6
seconds to 15 minutes are considered. Nevertheless, the choice
of an appropriate timescale for DSSE problems is still an open
question.

Topology: The distribution system has a radial topology and
is defined by a set of buses I of cardinality |I| as well as a set
of branches B of constant and known impedances, connecting
the buses. While in this work the network model is assumed
to be perfectly known, in practice, the precision of the model
would impact the accuracy of the estimated state, irrespective
of whether PASE or any other method is used. This assumption
is however commonly made in almost every state estimation
work. The substation transformer is modeled as a reference
voltage source of magnitude V0.

Measurements: The subset S ⊆ I of buses are equipped
with PMUs that monitor at every ∆T both, bus voltage
magnitudes (Vs) and bus angles (δs). In this paper, the PMUs
are assumed to provide only the voltage phasors and not the
current phasors of the branches since the focus of this work is
on low-cost PMUs [3], [4], as mentioned in the introduction
(clearly PASE and the SoA can accommodate other types of
measurements (such as branch flows for example)). A broad-
band communication infrastructure is available to transmit the
measurements with low latency and high reliability. The PMUs
are placed in the distribution system according to a given
mapping S .

Pseudo-measurements: these are forecasts that “measure”
both active and reactive powers. They are available for each
bus i in I . Forecasts are made at periodic intervals ∆T ′,
typically once a day for the next day (day-ahead forecast).
At the time of computation, the most recent forecast is used.
Clearly, forecasts and PMU measurements are on completely
different time-scales (∆T ′ � ∆T ), hence the non-triviality
of the EnKF. Forecasts are made based on historical data.
Previous estimation work based on Kalman filters assumed
real-time consumption data. This strong requirement is relaxed
with forecasts. This time horizon is well suited for DSSE since
day-head forecasts are typically computed by utilities every
day. Hence they are readily available and do not introduce any
extra computational burden [20].

Data requirements: both the SoA and PASE approaches
require a forecasting method as well as sample power con-
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sumption traces (active and reactive) from the system at
the level of each distribution transformer, from which the
forecasting method can be calibrated. Using the data, error
parameters can be obtained offline. Let ei(t) be the forecast
error at bus i and time t (for active power, for example); ei(t)
is assumed to be a stationary random process. The variance of
the forecast error (E[ei(t)

2]) is supposed to be known. These
two hypotheses are almost always used by researchers [8]. The
estimation of the variance of the forecast errors comes from
the acquired data.

The proposed PASE method needs two additional infor-
mation that can be derived from the same sample data: a
load evolution model (which will be discussed in Section
IV-A) and the forecast error correlation coefficient, evaluated
between two (computation) time-steps at a given bus (i.e.,
E[ei(t)ei(t−∆T )]).

Finally, the load forecast errors are assumed to be un-
correlated between buses, an assumption often made in the
literature [8]3.

System state: it is represented by state vectors; different
(equivalent) state representations are used depending on their
ease of use in the problem formulation. For example,

y[t] = [V[t]T , δ[t]T ]T

is a possible state vector representation, where V[t] is the
vector of voltage magnitudes at each bus, and δ[t] the vec-
tor of voltage angles. Another way is to define x[t] =
[P[t]T ,Q[t]T ]T where P[t] and Q[t] denotes the vectors of
active and reactive power injections at each bus, respectively
[21]. Note that given that the substation transformer is modeled
as a constant voltage source, the source bus voltage is not
included in the state vector. Also note that the power-flow
equations link the state-vectors x and y. A third way, used in
theoretical formulations, is w[t] = [v1[t], . . . , v|I|[t]]

T where
vi[t] is the voltage phasor at bus i, time t; this can also
similarly be related to other representations.

Limitations: In this work, unbalanced system, distributed
generation and biased measurements are not considered and
are left for future studies.

III. STATE-OF-THE-ART DSSE METHOD

The SoA method [2], [22], [23] used to solve the DSSE
problem, is a snapshot approach and uses a nonlinear WLS
objective function. The inputs and outputs of the SoA are
summarized in Fig. 1. Given the system characterized by the
sets I,B, S and the mapping S , the system state, at a given
time, is estimated using an overdetermined set of equations. In
the following, the time dependency of the variables is dropped
for better readability. The variables to be determined are the
2|I| state variables. Each measurement adds one constraint.
There are either 2 or 4 measurements per bus (active/reactive
power forecast, voltage magnitude, and angle), depending on
whether there is a PMU at the bus. The number of constraints
is given by M = 2|I|+ 2|S|.

3Note that even if this assumption is not made, the SoA and PASE
formulations are still valid. In such a case, the correlations need to be taken
into account in the computations.

Fig. 1. Flowchart detailing the inputs and output of the SoA

The PMU measurements and the forecasts are stored in a
vector z of length M , and are related to the system state as per
the following model: z = f(y)+η where f is the function that
maps the state vector to the measurement vector, and η is the
vector containing the measurement noise and model uncertain-
ties. For example, f(y) = [V(y)T , δ(y)T ,P(y)T ,Q(y)T ]T

where V(y) and δ(y) are the vectors, respectively, containing
the voltage magnitude and angle measurements at the buses
with PMUs and P(y) and Q(y) are vectors of active and
reactive power forecasts of size |I|, respectively. Assuming
that the measurement errors are uncorrelated and have zero
mean, the covariance matrix Σ of the error vector η is written
as, Σ = diag(σ2

1 , ..., σ
2
M ), where σ2

m is the variance of the mth

measurement.
The objective function to be minimized at each time-step is

given below:

J(y) = (z− f(y))T Σ−1(z− f(y)) (1)

Several methods exist to minimize the objective function, the
simplest being to iteratively linearize f and solve the resulting
objective using the normal equations.

IV. PROPOSED METHOD: PASE
To solve the DSSE problem, PASE, an EnKF-based method,

is proposed. Kalman filters are sequential filtering methods.
Each iteration is a two steps process: 1) the system state is
integrated in time using an evolution model, defining a (a
priori) state estimate. 2) Available measurements (including
pseudo-measurements) are used to correct the estimate and
define the updated state. The second step is referred to as the
update-step during which data assimilation occurs. The load
evolution model used in this approach is presented in Section
IV-A. The idea behind the proposed approach is simple: the
additional information provided by the load evolution model
and the previously estimated states are used to alleviate the
poor quality of pseudo-measurements. The inputs and outputs
of PASE are summarized in Fig. 2. Notice how the flowchart
for PASE is very similar to the one for the SoA.

A. Load Evolution Model
For each distribution transformer bus, an evolution model for

the aggregate load is needed, both for the active and reactive
power consumptions. An autoregressive model of order one
AR(1) is used, with coefficient equal to one. Such a model is
chosen for the following main reasons: it is simple, fits within
the Kalman filter framework and is intuitively reasonable, for
the time horizon considered in this work. In addition, the
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Fig. 2. Flowchart detailing the inputs and output of PASE

EnKF requires the characterization of the prediction error
which is easily done with such a model. IT is discussed
next. Let Lp

i (t) and Lq
i (t) denote the instantaneous active and

reactive aggregated power respectively, at bus i and time t.
It is assumed that Lp

i (t) and Lq
i (t) are stationary random

processes [24]–[26]. The representations of Lp
i and Lq

i are
such that: Lp

i (t + ∆T ) = Lp
i (t) + ζpi (t), where ζpi (t) is

white noise (and similarly ζqi (t) for Lq
i ). The load evolution

model will characterize the probability density functions (pdf)
of ζpi (t) and ζqi (t). Specifically, the load variation between
two (computation) time-steps is considered. The load variation
(aka load evolution model) for active and reactive powers are
defined as the stationary random processes Lp

i (t)−Lp
i (t−∆T )

and Lq
i (t) − Lq

i (t − ∆T ) respectively, characterized by their
probability density functions (pdf). The mean of the processes
is zero and the variance of the processes can be computed from
the pdf both for active and reactive powers at bus i, denoted
by (σp

i )2 and (σq
i )2, respectively. Such an evolution model is

simple and fits within the EnKF framework. The pdf can be
derived empirically, for example, from the existing required
sample traces, discussed in Section II as will be explained in
Section V-A. The empirical pdfs are computed once, offline,
for each bus. Clearly a given load evolution model is valid only
for systems with similar load compositions, and will vary for
different geographical areas.

B. Ensemble Kalman Filter
The traditional Kalman filter maintains a covariance matrix

associated with the state estimate. The EnKF does not use
such a matrix and represents the system state pdf using a
set of state vectors called ensemble. Such ensemble at time-
step k (i.e., time k∆T ) is named Xk. The covariance matrix
is replaced by the empirical covariance computed from the
ensemble. The estimated system state is simply the mean
of the ensemble columns. The size of the ensemble, L,
will impact performance. A small ensemble size will yield
faster computations. However the covariance estimate from
the ensemble will be less accurate. Therefore there is a trade-
off between computational speed and accuracy and a typical
choice is L between 500 and 1000 [16]. The ensemble size L is
independent of the state vector size. The covariance estimator
cov(A,B) of two ensembles A,B is defined as [16]:

cov(A,B) =
1

L− 1
(A− E[A])(B − E[B])T (2)

where E[A] is the estimator of the mean of the column vectors
contained in ensemble A. For cov(A,A) the shorter syntax

Algorithm 1 Estimation of the state at time-step k
Input: Xk−1, measurements and pseudo-measurements at

time-step k.
1: Compute Xk

p : integrate the ensemble in time (Eq. 3)
2: Compute Xk

u : assimilate pseudo-measurements (Eq. 11)
3: Compute Xk

a : assimilate PMU measurements (Eq. 13)
4: Xk ← Xk

u
Output: Estimated state x̃k = E[Xk] for time-step k.

cov(A) is used. Each iteration of the EnKF (corresponding to
a computation of the state vector at time-step k) follows the
procedure detailed in Algorithm 1, each step of the algorithm
is discussed next.

C. Initial Ensemble
The state vector x = [PT ,QT ]T (of size 2|I|) is used.

It is chosen given that the load evolution model described
in Section IV-A is defined in terms of injected power. The
pdf of the state vector x is represented by an ensemble
of size L: X0 = [x0

1, . . . ,x
0
L], X0 is a 2|I| × L matrix

containing the ensemble members. The initial ensemble is built
by choosing a “best-guess” estimate x0 of the state vector, to
which perturbations are added to represent the error statistics of
the initial guess. The choice of the initial ensemble is discussed
in Section V.

D. Ensemble Integration
The EnKF is considered at time-step k. The prior ensemble

Xk
p is obtained by individually integrating forward in time

each vector of the ensemble Xk−1, which was computed at
the previous time-step. Given the AR(1) process considered,
the integration is such that:

Xk
p = Xk−1 + [n1, . . . ,nL] (3)

where nl (l = 1, . . . , L) are column vectors of size 2|I|
containing the stochastic noise which accounts for the un-
certainties of the load evolution model. Based on the load
evolution model defined in Section IV-A, two variance values
(σp

i )2 and (σq
i )2 are associated to each bus i (i = 1, . . . , |I|),

respectively for the active and reactive powers. Their values
depend on the empirical pdf derived.

Each ni,l and n|I|+i,l (i = 1, . . . , |I|) is respectively drawn
from a distribution which represents the empirical pdf of the
load evolution model. Note that the EnKF can accept any load
evolution model.

E. Assimilation of Pseudo-Measurements
The assimilation of measurements and pseudo-

measurements correspond to the update step of the Kalman
filter, described at the beginning of Section IV.

An assumption in Kalman filtering is that the measurement
error is white Gaussian noise. Since pseudo-measurements
are forecasts and do not depend on the state of the system,
they do not satisfy this requirement; instead the forecast error
is correlated in time. This problem, which is recurrent in
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Kalman-based kinematic GPS applications has been solved
previously, and a summary of the different existing techniques
can be found in [27]. The solution chosen in this paper is the
time-differencing approach described in [28] to remove time-
correlated error in the pseudo-measurements. This method
was selected for two reasons: 1) it does not require any
reinterpretation of the Kalman equations and 2) it does not
introduce any latency.

To remove the correlations, the following process is used.
Let the transition matrix Ψ of the time-correlated error be
defined as:

Ψ = diag(ψp
1 , . . . , ψ

p
|I|, ψ

q
1, . . . , ψ

q
|I|) (4)

where ψp
i and ψq

i (i = 1, . . . , |I|) are the forecast error
correlation coefficients at bus i, respectively for active and
reactive powers, introduced in Section II;Ψ is diagonal since
the forecast errors between buses are assumed to be uncorre-
lated. Q is defined as the model noise covariance matrix, and
is given as:

Q = diag((σp
1)2, . . . , (σp

|I|)
2, (σq

|I|+1)2, . . . , (σq
2|I|)

2) (5)

R is the covariance matrix of the forecast error, of size
2|I|×2|I|. R is diagonal since the forecast errors are assumed
not correlated across buses, and is given as:

R = diag((σfp
1 )2, . . . , (σfp

|I|)
2, (σfq

|I|+1)2, . . . , (σfq
2|I|)

2) (6)

where σfp
i and σfq

i are the standard deviations of the
forecast error at bus i, respectively for the active and reactive
powers. The pseudo measurements are contained in a vector
d of size 2|I|. An ensemble D of L perturbed observations
is defined such that D = [d1, . . . ,dL] with each dl = d + εl
(l = 1, . . . , L), where εl is a vector drawn from a distribution
which models the pseudo-measurement noise. Before estab-
lishing the update step, intermediary matrices are defined next,
which will be reused for the theoretical derivations.

H. = H −ΨH, C = QHT ΨT , D. = D −ΨD (7)
R. = (R−ΨRΨT ) + ΨHQHT ΨT (8)

The updated observation and measurement matrices, H. and
D., respectively, are computed in (7). The updated mea-
surement error matrix R. is computed in (8); Ψ is used to
remove the time correlation of the forecast error between
two time-steps; C is used as intermediary to shorten (9)-
(10). The model noise matrix Q is needed to ensure that the
noise introduced by the evolution step is retained. Indeed such
noise does not have any time correlation component. In this
context, the observation matrix H is the identity matrix (in
Section IV-G the observation matrix will not be the same). The
update equations for the assimilation of pseudo-measurements
are given as (E is an intermediary matrix, K represents the
Kalman gain matrix):

E = H.cov(Xk
p )H.T +R. +H.C + CTH.T (9)

K = (cov(Xk
p )H.T + C)E−1 (10)

Xk
u = Xk

p +K(D. −H.Xk
p ) (11)

F. Assimilation of PMU Measurements
Similar to the pseudo-measurements, the measurements

coming from the PMUs are contained in a vector z of size
2|S|. An ensemble Z of L perturbed observation vectors is
computed such that Z = [z1, . . . , zL], with each zl = z + ξl
(l = 1, . . . , L), where ξk is a vector drawn from a distribution
which models the measurement noise.

The measurements from the PMUs can be related to the state
vector using a function h, such that zl = h(xl) + γk, where
γk is an error vector. The function h(·) takes as input the
system state and returns a vector containing the measurements
that would have been observed considering that particular
system state. Given that x contains the active and reactive
powers injected at each bus, h(·) is the power-flow solution;
the EnKF does not need to know the analytical expression of
h(·). It is the solution given by the LDC’s power-flow solver,
for example. This makes the EnKF independent of the way
power-flows are computed. The cost of such independence is
computational: one need to compute L power-flows at each
time-step. Since h(·) is non-linear, the measurements cannot be
obtained directly from the state using a simple multiplication
by an observation matrix. Instead, h(x) needs to be computed
explicitly. A temporary augmented state x̂ and augmented
ensemble X̂k

u are used to perform the assimilation, where:

x̂l = [xT
l ,h

T (xl)]
T , X̂k

u = [x̂1, . . . , x̂L] (12)

The updated ensemble Xk
a is then computed:

Xk
a = Xk

u +K(Z − ĤX̂k
u) (13)

K = cov(Xk
u , ĤX̂

k
u)[cov(ĤX̂k

u) + cov(Z)]−1 (14)

where Ĥ is a selection matrix used to select the rows of the
state vector corresponding to the desired measurements. While
only PMU measurements are considered in this paper, other
types can be assimilated using the same technique.

G. Theoretical Estimate of Performance
In this section, a method to compute a theoretical estimate

of the performance and the improvement achieved by the pro-
posed PASE method is developed. The goal of this theoretical
modeling is to be able to check in a time-efficient manner if the
performance gain brought about by PASE is worth its higher
complexity, on the system considered. Indeed, computing
the performance gain by running Monte-Carlo simulations is
costly in time and computations. Therefore, being able to have
a rough estimate of the performance gain is extremely useful.
The method is based on [8], where the authors proposed a
technique for estimating a priori the performances of the WLS
estimator. Their work is extended in this paper to fit the EnKF
and compute the relative gain between the two. The derivation
is performed under the following assumptions, also made in
[8]. The state vector is represented by w = [v1, . . . , v|I|]

T .
The forecast variance, the forecast error time-correlation and
load evolution model variance are assumed to be constant and
identical for active and reactive powers. They are denoted
respectively (σf

i )2, ψf
i and (σd

i )2. At each bus i, the apparent
power magnitude |Sf

i | is used to represent the load forecast. In
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the analysis framework, the shape of the load evolution model
is not need to be known, the value of the variance is sufficient.

The theoretical computations are performed by using a
linear Kalman filter. The covariance matrices are made time-
invariant in order to obtain a steady-state formulation of the
filter [29]. From this formulation, the covariance matrix of
the system state can be computed and used to approximate
the performance of the non-linear EnKF. The performance of
WLS can also be computed since it can be seen as a Kalman
filter that is reset for each new estimation. To evaluate the
performance of the two state estimators over a period of time
T , the average root mean square error of the voltage estimate
(ARMSEV) is used as metric:

ARMSEV =

√√√√ 1

T |I|

T∑
t=0

|I|∑
i=1

E[|v̂i[t]− vi[t]|2] (15)

where vi is the true voltage at bus i and v̂i the estimated
one. A linear version of the power-flow equations is used; it
is the first iteration of backward-forward sweep. A vectorized
formulation is obtained by using a distribution load flow (DLF)
matrix, denoted by M , as described in [30]. The relationship
between the injected power at each bus (represented by the
vector s = [s1, . . . , s|I|]

T , with si the injected power at bus i)
and the state vector is given as:

w = [V0, . . . , V0] +
1

V0
M · s (16)

where s is the conjugate of s. Several matrices used by
the Kalman equations are defined. The load evolution noise
covariance matrix Q expressed in terms of the apparent power,
and the forecast error covariance matrix RS are computed as
follows:

Q = diag((σd
1)2, . . . , (σd

|I|)
2) (17)

RS = diag((σf
1 )2, . . . , (σf

|I|)
2) (18)

The PMU measurement error covariance matrix is approxi-
mated by assuming that the variance of the voltage error when
projected onto the real and imaginary axes is the same and
equal to σ2

PMUV
2
0 , where σ2

PMU is the relative variance of
the PMU measurements such that RPMU = 2σ2

PMUV
2
0 ×I|S|,

where I|S| is the |S| × |S| identity matrix.
The steady state covariance matrix of the state vector is

computed by iterating the Kalman equations. The covariance
matrix is denoted by Σ

(·)
a . The iteration number is indicated in

the parenthesis (·). Such matrix will converge to a steady state
covariance matrix Σ

(ss)
a . For each iteration, two other matrices

are used to track the covariance matrix during intermediary
steps: Σ

(·)
p and Σ

(·)
u . They represent respectively the covariance

matrix of the prior state and the state after assimilation of PMU
measurements. At iteration 0, the prior covariance matrix of
the state is computed such that:

Σ(0)
p = M ·RS ·MH (19)

where (·)H indicates the Hermitian transpose (transpose con-
jugate operator). The updated covariance matrix obtained after
the assimilation of the PMU measurements is then computed:

Σ(0)
a = Σ(0)

p −KHΣ(0)
p (20)

K = Σ(0)
p HT (HΣ(0)

p HT +R)−1 (21)

where H is the observation matrix for PMU measurements. It
is a selection matrix that relates state variables to the measure-
ment vector. One can estimate the ARMSEV performance of
WLS based on Σ

(0)
a : ARMSEVWLS =

√
1
|I| trace(Σ

(0)
a ).

Any iteration it (it 6= 0) is performed in 3 steps: first
the prior covariance matrix Σ

(it)
p is computed based on the

previous iteration, then the covariance matrix is updated using
the PMU measurement covariance matrix, and finally the
pseudo-measurements are assimilated. The first two steps are
such that (where H is the same matrix as in (20)):

Σ(it)
p = Σ(it−1)

a +M ·Q ·MH (22)

Σ(it)
a = Σ(it)

p −KHΣ(it)
p (23)

K = Σ(it)
p HT (HΣ(it)

p HT +RPMU )−1 (24)

The third step differs because of the pseudo-measurement
error time correlation (see Section IV-E). The same time-
differentiation method is used. The same updated matrices are
computed according to (7)-(8) with only a few differences.
Now H is the inverse DLF matrix, mapping the state vector
to the injected power (H = M−1). The forecast error time
correlation matrix is such that Ψ = diag(ψf

1 , . . . , ψ
f
|I|). Finally,

the matrix R used in (8) is such that R = RS . The update
equations thus become:

Σ(it)
a = Σ(it)

u − (Σ(it)
u (H.)T + C) ·KT (25)

K =
[Σ(it)

u · (H.)T + C] · [H.Σ(it)
u (H.)T

+R. +H.C + CT (H.)T ]−1
(26)

Once the steady state is reached after a few iterations, the
theoretical performance of the EnKF can be computed. The
ARMSEV error is such that:
ARMSEVEnKF =

√
1
|I| trace(Σ

(ss)
a ). The relative gain is ex-

pressed as: Gain = ARMSEVWLS−ARMSEVEnKF
ARMSEVWLS

.

V. VALIDATION AND RESULTS

The improvement in performance achieved by the proposed
PASE method over WLS is evaluated by considering a 33-
bus test distribution feeder [17] under normal operations. Its
one-line diagram is given in Fig. 3. The WLS estimation
problem is modeled in GAMS environment and solved using
the MINOS solver. Attention has been paid to avoid potential
numerical issues. The ensemble size is set to L = 500
and the power flow solutions obtained from h(·) using the
backward/forward sweep method [30]. The system is simulated
over a period of 24 hours. For the theoretical estimation, 50
iterations ((ss) = 50) are enough to compute the steady-state
of the state covariance matrix.
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Fig. 3. One-line diagram of the 33-bus system.

A. Load Evolution Model
The (bus) load evolution model was developed using a fine-

grained energy consumption dataset from Ontario, Canada.
The dataset used to build the model is described in [31] and
comprises instantaneous active power consumption data from
20 homes, collected over eight months, with a resolution of 6
seconds. The dataset is split randomly into two subsets, one
for deriving the characterization (training set), and one for the
validation process (testing set). No distinction is made between
the size of the houses nor for special days. The resulting dataset
is a collection of a few thousands of traces. Although 20 homes
may seem to be a limited sample size, considering the daily
power traces independently allows to have a large number of
unique profiles. Moreover the 20 households cover a wide
range of living area sizes and energy consumption patterns
which increases the trace diversity.

Let n be the number of households connected to a bus.
Using the training set, empirical distributions for load changes
were constructed for different values of time-steps ∆T and
aggregation levels n. A Laplace distribution described by a
scale parameter b (and variance σ2 = 2b2) was found to
be a good fit. The mean value is set to zero since as many
positive and negative load changes are expected. This implies
that the transition model is the identity, while its uncertainty is
characterized by the Laplace distribution. Figures 5 and 6 are
Q-Q plots that illustrate respectively, a good fit and the worst
fit of all the aggregation levels and time-steps, considered in
Fig. 4. In Fig. 5, the Q-Q plot approximately lies on a straight
line. In Fig. 6 (the worst fit), the S shape indicates that the
empirical distribution has a lighter tail than the Laplace fit.
The light tail property is desirable as it means that the load
evolution model will be conservative in its estimate of the
uncertainty.

The influence of ∆T and n on the distribution variance is
illustrated in Fig. 4. The variance essentially describes the load
variation over time, a small value implying little variations. It
is noted that as n decreases and ∆T shrinks, the value of σ2

diminishes.
It was assumed that load changes are uncorrelated between

buses; which can be verified to hold true from the dataset, for
any value of n and ∆T up to 30 minutes.

The values of σ2 are derived empirically as a function of n
and ∆T . They are used to compute the evolution step of the
EnKF. Since no reactive power consumption dataset was avail-

Load evolution model variance: 2b
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Fig. 5. Q-Q plot illustrating a good fit of the Laplace distribution (n = 200,
∆T = 6s.).

able, a similar model is assumed for reactive power changes.
However, active and reactive power consumption changes are
assumed to be independent, which is a common assumption in
DSSE literature. The proposed method is generic and can be
applied to any dataset from across the globe.

B. Test Distribution System
The 33-bus test feeder data includes active and reactive

power loads at each bus; bus-1 is the substation transformer
bus, with V0 set to 12.66 kV. The number of houses ni aggre-
gated at a bus i is selected such that ni = n11P

33bus
i /P 33bus

11
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Fig. 6. Q-Q plot illustrating the worst fit (n = 10, ∆T = 6s.) of all the fits
considered
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where n11 = 10 houses and P 33bus
i is the static 33-bus active

power load at bus i.
The corresponding distribution transformer traces are gen-

erated from the second half of the dataset, by summing the
desired number of profiles, picked randomly. Each trace is then
scaled so that the mean of the profile matches the load values.
The values given by the empirical function in Section V-A
are scaled accordingly. Because no dataset for reactive power
consumption is available, active and reactive power profiles
are generated independently from the same dataset.

C. Measurement Model
The simulation models used for measurements are described

in this section.
PMU: the PMU measurement error is simulated as an

additive white Gaussian noise of nominal variance σ2
PMU , for

both voltage magnitudes and angles. The readings Ṽs and δ̃s
provided by the PMU at each bus s (s ∈ S ⊆ I) have an
error variance such that E[ã2] = σ2

PMU · ã2, where ã indicates
either the voltage magnitude or angle. The measurement errors
are independent across buses, and the voltage magnitude error
independent of the angle error. The PMU resolution is set to
1% (σPMU = 0.01); the PMU placement map S is deter-
mined using a greedy method [8], i.e., PMUs are sequentially
added at the location that provides the most improvement (with
32 load buses, a maximum of 32 PMUs). The placement of
PMUs is beyond the scope of this work; many researchers have
addressed this issue, see for example [32]. The sequential bus
placement map used is the following: S = {33, 32, 31, 18,
17, 30 16, 29, 15, 14, 13, 28, 12, 11, 10, 9, 8, 27, 26, 7, 6,
25, 24, 5, 4, 23, 3 22, 21, 20, 19, 2}

Pseudo-measurements: the forecasts P f
i and Qf

i are taken
as the mean value of the load profile generated at each
distribution transformer i, as in [8]. They are constant over
the simulated period. Using the training set, the nominal
standard deviation of the forecast was evaluated and set to
σ0 = 30%, for both active and reactive powers, irrespective of
the aggregation level. Therefore for each bus i, σfp

i = σ0P
f
i

and σfq
i = σ0Q

f
i (6). The constant apparent power forecast

|Sf
i | is such that |Sf

i | = |P f
i + jQf

i |. Finally each σf
i (18)

is computed as σf
i = σ0|Sf

i |. Pseudo-measurements to which
synthetic perturbations following a Gaussian distribution are
used as “best-guess” initial ensemble.

Error time-correlation: ψp
i and ψq

i are evaluated as fol-
lows: since the same data is used for generating the active
and reactive power profiles, ψp

i and ψq
i are equal. They are

evaluated on the training set. Given an aggregation level and
a time-step length, load profiles are built. The autocorrelation
function Re

i of the difference between the profile and its mean
(representing the forecast error) is computed. The value of ψp

i
and ψq

i is given by Re
i (∆T ).

D. Validation
The theoretical and simulation results are presented in

Figs. 7a-7c, obtained by averaging the results of several real-
izations. A realization is defined as the observed performance
of both the WLS and PASE on the 33-bus system. For each

realization, new load profiles are generated based on the
testing set, while the other parameters stay the same. The
performance of the WLS and PASE are plotted alongside
with the theoretical ones in Fig. 7a, where a time-step of 6
seconds has been used. WLS has been studied in [8] using
synthetic data. Similar trends are observed here with real data.
Note that since WLS is snapshot-based, the size of the time-
step does not matter. For PASE, the theoretical results are
close to the actual performance observed in simulation as the
number of PMUs introduced in the system increases, which
validates the theoretical approach. Similar trends are observed
for different time-steps. The actual gain brought about by
PASE is compared with the theoretical one in Fig. 7b for a
time step of 6 seconds. The theory allows to estimate quickly
the order of magnitude of the gain achieved by PASE over
WLS. Finally the influence of the time-step on the gain is
compared in Fig. 7c for two PMU configurations (5 PMUs and
20 PMUs). Theory and simulation follow the same trend. The
gap between theory and simulation is relative to that observed
in Fig. 7b.

Clearly, in the theoretical formulation, the linearization
process and the simple load modeling introduce a visible error,
especially when the number of PMUs is small. However, such
error is tolerated as the goal of the theoretical computations
is to provide a rough estimate of the gain from using PASE
over WLS, without having to carry out expensive Monte-Carlo
simulations.
E. Comparison Between WLS and Proposed PASE Method

The results presented in Fig. 7a illustrate the improvements
achieved by the proposed PASE method. Clearly, using a load
evolution model improves the performance of the estimator;
given an arbitrary target error of 0.004 p.u., WLS requires
more than 10 PMUs while PASE only 4. Even when each bus
of the distribution system is monitored by a PMU, the proposed
PASE method still brings about an improvement of more than
40% when using a time-step of 6 seconds. As illustrated
in Fig. 7c, higher gains are obtained for smaller time-steps.
Indeed, for larger time-steps, the load has more chances of
changing by a large magnitude between two estimates and thus
has less inertia. Even for large time-step (e.g., 10 mins) there
is a gain of about 15%. In practice, the granularity of the
time-step depends on the available computational speed. The
smallest time-step considered in this work is 6 seconds and
represents a lower-bound on what was tried out. In comparison,
the DSSE problem was solved at each step in under 200
millisecond. Clearly, PASE has a higher computational cost
than the SoA. Indeed L power-flows must be solved, and
the cost of solving one of those power-flow increases with
the number of buses in the system. The reported performance
above is for L = 500 and 33 buses, where all the computations
are performed using Matlab on a standard desktop computer.
If the computational cost becomes a limiting factor, diverse
strategies exist such as running the power-flow computations
in parallel (the L power-flows are independent).
F. Engineering Insights

In practice, the LDC will need to make trade-offs in the
choice of the following parameters: number of PMUs, their
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accuracy and the time scale. The influence of PMU accuracy
on the theoretical gain achieved by PASE is shown in Fig. 8,
the three parameters considered are depicted in the plot. The
maximum gain is attained for a PMU error variance of about
1%. Clearly as the PMU measurement standard deviation
decreases (i.e., the PMU becomes more and more accurate)
the gain achieved by PASE decreases since the load evolution
model is not as useful in such circumstances. Similarly, as the
standard deviation of the PMU increases, the gain decreases,
since the load evolution model has to compensate for both
poor forecast accuracy and poor PMU measurement accuracy.
This figure also illustrates the role of the time-step, the gain
achieved by the filtering technique decreasing as the time-step
increases, underlining the limits of the load evolution model.

Note that one should be careful not to draw any relation or
trend between the number of PMUs and the gain achieved in
Fig.. 7b. As illustrated by Fig. 8 the gain in that case would
also depends on the PMU accuracy.

The trade-off between the three parameters considered is
illustrated by Fig. 9: two PMU accuracies are used to draw
the plots. An arbitrary target error is fixed and the minimum
number of PMUs required is determined as a function of the
time-step. Clearly, the time-step has little influence on a very
accurate PMU. However, the more accurate the PMU, the more
costly it will be. With the same number of PMUs placed in
the system (4), choosing a PMU ten times less accurate will
provide the same performance given that a time-step small
enough (6 seconds) is chosen.

G. Sudden Load Changes and Bad Data Detection
Sudden load changes, topology errors and gross bad data

in measurements constitute irregularities that are susceptible
to affect state estimators that are not robust enough. Some
estimators have been specifically designed to be insensitive to
these issues, such as the one presented in [33].

The robustness of PASE is studied in the following case: an
artificial sudden load change is simulated at bus 12. Without
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any warning, the active and reactive power consumptions are
divided by a factor 10, to mimic a sudden and unexpected
load drop. As one would expect, the pseudo-measurements
cannot foresee such event and their values are kept as if the
system was under normal operations. 10 PMUs are placed in
the system, and a time-step of 6 second is used. ARMSEV is
used to assess the performance. For comparison purposes, the
performance of WLS is displayed as well. The goal of such
comparison is not to claim that PASE is more robust than
WLS, but rather show with a single experiment that PASE has
enough intrinsic robustness to handle sudden load changes. Its
robustness will be studied in more details in a future work.
The results, averaged over several realizations, are presented
in Fig. 10. During the first 25 minutes, where the system is
under normal operating conditions, the ARMSEV achieved by
PASE is about 40% lower than the one achieved by WLS.
When sudden load drop happens (at t = 25 mins), the average
error of PASE surges, until the filter tracks again correctly the
new operating point. Regarding WLS, the average error of the
estimator increases at the time of the incident and remains
higher than before.

To ensure estimation consistency, topological errors and bad
data (erroneous measurements) must be detected and either
corrected or removed. For WLS, bad data detection is usually
performed by doing hypothesis testing on residuals [2] (i.e.,
the objective function is compared to a maximum threshold
value). In the proposed PASE framework, typical bad data
detection can be performed as follows: first WLS is run.
The estimated state is discarded and only bad data detection
is performed. Once input data is clean, the system state is
computed using PASE. Such bad data detection mechanism is
simple. Other more advanced bad data detection methods in
filtered framework have also been developed, such as the one
described in [34], where the authors describe the use of the
state forecasting capability of Kalman filters for improved bad
data detection.

VI. CONCLUSIONS

A novel PASE method for DSSE and its analysis framework
were presented. The PASE method performs the fusion of mea-
surements and pseudo-measurements and requires fewer PMUs
than WLS to achieve the same estimation error, for time-
steps under 15 minutes. Engineering insights were presented
highlighting the major trade-offs in the choice of decision
variables for the LDC. Using a smaller time-step allows the
LDC to relax the requirements on the PMU quality and their
number. There are several remaining challenges, such as a
further study of the state forecasting capabilities of PASE for
bad data detection, the study of the influence of distributed
generation and its modeling as well as the impact of an
unbalanced system on PASE. It would also be interesting to
assess the performance of PASE on meshed systems.
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