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Abstract—The current power grid is conservatively provisioned
for rarely-occurring peaks. Expensive, quickly-ramping genera-
tors, typically with high carbon emissions, provide peak power.
Therefore, it is possible to reduce both capital cost and carbon
footprint by reducing the peak load. We address this issue by
proposing to intelligently reduce loads from household appliances
during peak times. Our scheme capitalizes on the fact that the
power consumed by resistive loads can be reduced, at the cost
of a small increase in appliance operation duration, with little
impact on perceived user comfort. Specifically, on the receipt
of congestion signals from the grid, appliance-based controllers
intelligently reduce their load while ensuring that user comfort
does not degrade below a pre-specified level. Simulations show
that significant gains in energy reduction can be obtained with
our scheme. For example, in Quebec, an estimated 12.9 MWh of
peak power reduction can be obtained for a maximum of 10%
increase in appliance operation duration.

I. INTRODUCTION

Today’s power grid is conservatively designed to provide
highly reliable service to consumers. The reliability is gained
at the expense of extensive infrastructure in the form of
generation, transmission and distribution systems [1]. These
systems supply both a nearly-constant base load as well as
a variable peak load. Systems that meet peak requirements
are rarely used, yet add significantly to the capital cost, and,
when used, introduce additional carbon footprint. Therefore,
it is imperative to reduce the peak load to the extent possible.

One approach to peak-load reduction comes from exploiting
the elasticity of household appliances [5]. An elastic com-
ponent of an appliance, typically a resistor used for heating
air or water, can instantaneously reduce its demand with no
adverse impact on the appliance’s lifetime. With adequate
insulation, when an elastic component reduces its demand by
a factor α, the time required to complete the operation of
the appliance will be extended in inverse proportion to α.
However, the greater the increase in operation duration, the
greater the user discomfort. Therefore, the factor by which
the appliance duration is extended can be used as a measure
of consumer comfort. Reference [5] demonstrated significant
potential in peak reduction.

Our work builds on [5]. It embodies the following key
insight: If information about the current state of the grid is
supplied by the utility to smart appliances in a periodic manner
in the form of congestion signals, and if appliances operating
elastic components have some delay budget (duration by which
the appliance operation is extended) remaining, they will be

able to react to the signals from the grid so that the congestion
in the grid is eased. Congestion signals can reflect one of
several different grid operating conditions, including lack of
generation sources to meet aggregate peak demand or the
excessive use of plants with high carbon footprint. These
signals shift appliance use to demand slack periods without
significantly affecting consumer discomfort.

Our work makes three main contributions:
• We design an appliance-side controller for smart appli-

ances that responds to congestion signals from the grid
to adjust the power consumption of elastic appliance
components while causing only a bounded degree of user
discomfort.

• We propose a design for an utility-side signal generator
that adaptively computes two types of congestion signals,
basic and advanced, to be sent to appliances.

• We use simulations to demonstrate that our system re-
duces the peak load in response to congestion signals, as
desired, with significant gains under realistic conditions.
Moreover, the system is stable and responsive.

II. RELATED WORK

Utilities have long used both price-based and incentive-
based demand-management schemes for load shaping. These
are extensively surveyed in Reference [6]. Because these
schemes do not focus specifically on household appliances,
we do not discuss them further.

This paper builds upon on our prior work [5], where we
introduced the notion of elasticity in appliance electricity
consumption. Specifically, we studied the potential to carry
out demand response by modifying ten common high-power
appliances, such as dishwashers, baseboard heaters, and wash-
ing machines. Each appliance consists of several components
whose distinctive periods of activity and inactivity during the
operation of the appliance results in the appliance having a
deterministic nominal load profile, that is, the power consumed
by an unmodified appliance over the duration of its operation
(see Figure 2 for an example). Some appliance components
are elastic, that is, they can decrease their instantaneous power
draw at the expense of increasing their duration of operation,
but with no impact on the appliance’s lifetime. Assuming
separate control of an appliance’s elastic components, we
quantified the relationship between the potential reduction in
aggregate peak and the duration required to complete the



operation of appliances in four geographic regions: Ontario,
Quebec, France and India. We found that even with a small
extension to the operation duration of appliances, peak demand
can be significantly reduced in all four regions both during
winter and summer.

Some appliances for sale today already include demand
response features such as start time delay functions [4].
Appliances whose operation can be shifted can have their
starting times be delayed according to pricing signals. Other
appliances with thermal inertia (such as air conditioners and
space heaters) can also potentially select a temperature setpoint
according to pricing signals and consumer preferences. In this
case, we can view the grid as “signalling” congestion state to
appliances using pricing and appliances as responding to these
signals by delaying their start times. This approach differs
from ours in two ways. First, time of use pricing signals
change rarely and do not reflect the instantaneous state of the
grid. Second, postponing start times of appliances may result
in noticeable discomfort to consumers.

Recent work has proposed scheduling frameworks for do-
mestic appliances[7], [8], [9] . These schemes treat appliances
as on-off loads. Moreover, these schemes do not quantify the
decrease in user comfort due to their actions. In contrast, we
examine properties of appliances at a finer granularity and
ensure that the lifetime of appliances are not affected by
varying power supplied to components that are sensitive to
power fluctuations. We use realistic appliance statistics in the
region that we have chosen to study based on our earlier work
[5] (i.e., Quebec) to identify the gains in a set of homes, rather
than in a single home.

III. CONTROLLER DESIGN

A. Ideal controller

We first describe the characteristics of an ideal appliance
controller:
• Every appliance has its own mode of operation: a dish-

washer and a baseboard heater cannot be controlled in
the same way. Therefore, the controller should take into
account the idiosyncratic behaviour of each appliance.

• To reduce communication overheads, the controller
should receive the least amount of information from the
grid.

• The controller’s behaviour should be decoupled from the
reason why it was sent a congestion signal. This allows
congestion signals to be generated from a variety of
conditions, but all result in a decrease in the appliance’s
peak load.

• The controller should result in a bounded degree of user
discomfort. Specifically, once the duration of operation
of the appliance has reached a pre-specified limit, the
controller should ignore further congestion signals.

• The congestion signal should not directly dictate the
power consumption of the appliance, because of the ap-
pliance’s idiosyncratic behaviour and the residual comfort
budget. Instead, the appliance controller should make

power adjustments independently based on inferred con-
gestion trends.

• The controller should be stable, robust, and responsive.
The controller described next meets all of these requirements.

B. Fuzzy-logic based controller

Our appliance controller is designed as a fuzzy control
system [11]. This design decision is motivated by two con-
siderations.

First, fuzzy logic can be used to represent and perform
operations on elements that have partial belongingness to sets
or labels. This maps well to the concept of grid overload.
Specifically, with traditional “crisp” logic, the grid would be
said to be congested when the demand exceeds a particular
threshold and uncongested otherwise. Suppose that we con-
sider the grid to be congested when the traffic load exceeds
some threshold θ. Then, it follows that a load of 0.999θ,
which is very close to the congestion threshold, would still
result in the grid being thought of being uncongested. It
seems better, instead, to view each traffic load level to have
different levels of belongingness to the variables ‘congested’
and ‘uncongested.’ This is the insight behind fuzzy logic.

The second motivation for our design decision is that the
appliance controller needs to make a careful tradeoff between
stability and responsiveness. A large body of prior work has
shown that the use of fuzzy-logic based control results in the
design of (non-linear) controllers that are robust, responsive,
stable, and relatively insensitive to control parameters [11].
We therefore use fuzzy logic as the theoretical foundation of
our work.

The design of fuzzy controllers is well understood [11];
therefore, we merely sketch the design of our system next.
Note that in this description, we assume that time is discrete,
with actions occurring only during discrete points in time.

C. Notation

The following is a list of the notation and functions used
in our work. All notation is in the context of a particular
appliance that is being controlled by a controller. Recall that an
appliance consists of a set of elastic and inelastic components
and that the appliance is in an elastic phase when any one of
its elastic components is active.
• δ: The duration of a time step. This is typically 2 seconds

to represent communication delay.
• tn: This is the time immediately after the nth time step;

that is, n time steps of δ seconds have elapsed since some
reference starting point.

• Sc(tn): The signal that indicates the degree of congestion
in the grid at time tn.

• Bo: This is the nominal duration of operation of the
appliance (i.e., when it has not been modified).

• α: The fraction of time by which the appliance nominal
operation duration Bo can be extended. We also refer to
this as the appliance’s delay budget.

• φ(j): This function indicates whether phase j of an
appliance’s operation is elastic.



• Ej(tn): This function returns the amount of energy still
remaining to be consumed to complete phase j at time
step tn.

• Br(tn): This indicates the amount of delay budget re-
maining at time step tn.

• P jmin: This is the minimum power that can be consumed
by the appliance when it is in phase j. This will typically
be set by the manufacturer.

• P jn: This is the nominal power that is consumed by the
appliance at phase j.

• ∆j
n: This is the nominal time that is taken by the

appliance to complete phase j.
• Pm(tn): This is the minimum possible power the appli-

ance can consume at time tn so that budget requirements
are met. P jmin ≤ Pm(tn) ≤ P jn

• P (tn): This is the actual power consumed by the appli-
ance at time tn due to the control action.

D. Updating Variables

The parameters presented above represent the state of the
appliance at a given time. At every time step tn, energy and
budget parameters should be updated to reflect the appliance’s
current state. At every time step, Ej(tn), the amount of energy
remaining to be consumed in phase j, is updated to Ej(tn−1)−
P (tn−1)∗δ. Similarly, Br(tn), the delay budget remaining, is
updated to Br(tn−1)− δ + δ∗P (tn−1)

P j
n−1

.

In order to meet the budget requirements, we introduced
the term Pm(tn). This is computed as follows: Suppose the
appliance is in phase j and φ(j) = Elastic (no change to the
nominal profile is made on a non-elastic phase) then
• If Br(tn) ≥ δ then Pm(tn) = P jmin
• else Pm(tn) = P jn
Based on these updates, the appliance controller updates

the actual power P (tn) consumed according to the decision
it makes based on the input congestion signal. For these
calculations to be valid we assume that the appliances are
insulated with zero heat dissipation.

E. Controller Signal Input

The appliance controller receives from the grid a single
input, Sc(tn), which reflects the congestion state of the grid
at time tn. The grid transmits a congestion signal to all
the appliances every δ seconds (typically 2 seconds) at time
tn. The appliance controller’s interpretation of the congestion
signal is independent of how Sc(tn) is computed.

Three labels {good, bad, worse} are used to describe the
congestion state of the grid. We define a membership function
for each of these labels (µg , µb and µw) as illustrated in
Figure 1. In these membership functions, x, y, T are param-
eters. We assume that x = y and T = 1 + x + z where
z > 0. The last assumption is necessary as it makes no
sense to define overlapping membership functions. As an
example of how the controller will interpret Sc(tn), suppose
x = y = 0.1andSc(tn) = 0.95 then the controller will use the
membership functions to interpret the state of congestion of

Fig. 1. Membership function for Sc(tn)

the grid to be 0.75 good, to be 0.25 bad and to be 0 worse (i.e.,
the grid is not in a worse condition). Hence, at tn, the grid
is neither completely in a good state nor is it in a completely
bad state.

We next discuss how this fuzzified input will be used by
the appliance controller for making control decisions.

F. Controller System

We propose the following fuzzy inferencing system for the
appliance controller :

• R1: If congestion is good then increase power in small
increments (additive increase)

• R2: If congestion is bad then decrease power in small
decrements (additive decrease)

• R3: If congestion is worse then decrease power in large
decrements (go to the minimum power possible)

This fuzzy inferencing system is composed of three rules
each of which has one antecedent and one consequent. The
antecedents in the rule set use linguistic labels presented in the
membership function of Figure 1. The consequent in the rule
set is one of the following three linguistic variables {small
increments, small decrements, large decrements}. If at time
tn, the appliance is in phase j and φ(j) = elastic, then
the consequent of each rule is computed according to the
following functions:

• large decrements P (tn) = Pm(tn): the appliance should
draw the minimum possible power while still meeting
delay budget constraints.

• small decrements P (tn) = max[Pm(tn), P (tn−1)−∆w]:
the appliance should either reduce its power consumption
by ∆w if the reduced power (P (tn) = P (tn−1) −∆w)
is greater than the minimum power or it should draw the
minimum possible power otherwise

• small increments P (tn) = min[P jn, P (tn−1) + ∆w]: the
component should either increase its power consumption
by ∆w if the increased power is lesser than the nominal
power (P jn) or it should take the nominal power otherwise

These increments or decrements will not affect the appliance
lifetime as elastic components are not affected by variations
in power consumption.

The consequences from each rule, fC1, C2, C3g, are
computed according to the definitions above. Once these are
computed, the controller’s output, which is the actual value of



P (tn), is computed according to Equation 1.

P (tn) =
µg(Sc(tn)).C1 + µb(Sc(tn)).C2 + µw(Sc(tn)).C1

µg + µb + µw
(1)

In the following section, we show the gains from the
controller design outlined in this section using two different
schemes for utility signal generation. In Section IV, we use a
simplistic scheme and in Section V, we use a more enhanced
scheme.

IV. GAINS USING BASIC SIGNALLING SCHEME

In this section, we present the gains when appliances use
the controller design presented above when the utility uses
a simplistic mechanism for signal generation. The utility
computes signals to be transmitted to appliances as follows:
Sc(tn) = P (tn)

S where S is defined to be the setpoint and
P (tn) is the aggregate power consumption in the system at
time tn. The setpoint can be viewed as the intrinsic amount
of generation capacity available in, say, a microgrid, i.e., the
system goes into overload whenever this setpoint is exceeded.

We first consider a simplified illustrative example that
demonstrates how a single appliance controller reacts to these
signals if it is used to control a dishwasher. We will assume
that only this appliance exists in the system. We then study
a more complex situation where we assume that appliance
controllers are installed in 100 homes in Quebec. We have
chosen Quebec based on our earlier results [5].

A. Examples of controller behaviour for a dishwasher

Recall that our controller responds to congestion signals no
matter how they are generated. In this section, for simplicity,
we consider a dishwasher with six phases of operation that
receives a congestion signal, Sctn, from the utility. whenever
its load exceeds a value we call the setpoint, denoted S.

The congestion signal, therefore, is defined by Sc(tn) =
P (tn)
S
The parameters of the controller are set to the following

values: x = y = 0.1, z = 0.2. There are two elastic phases,
phases 2 and 4. P jmin of the resistive components that are
active during phases 2 and 4, are set to 0.5 ∗P jn, α = 1.1 and
∆w = 5W respectively. In order to illustrate the impact of
the signals on the behaviour of the appliance controller, three
different values of S are considered and results are illustrated
in Figures 2, 3 and 4.

For Figure 2 (resp. for Figure 3 and Figure 4), S = 1600W
(resp. 600W and 1200W).

In Figure 2, it is clear that since the setpoint is relatively
high, the controller is able to adjust its power consumption so
that the resistive heating element’s power consumption rarely
exceeds the setpoint of 1600 W. The appliance controller
is able to quickly react to the signals received and reduces
appliance load to the setpoint value. Of course, this results
in an extension of the duration of the elastic phase, but the
overall delay budget is not exceeded.

In Figure 3, the signal setpoint is set to a much lower value
of 600W. Since P jmin is set to 1000W for both elastic phases,

Fig. 2. Load profiles of dishwasher when S = 1600W

Fig. 3. Load profiles of dishwasher when S = 600W

the resistive heating element cannot consume power lower
than 1000W. Once, the allocated time budget has depleted,
the component returns to consuming its nominal power (P jn)
of that phase. We see that the appliance power increases to the
maximum towards the end of the first elastic phase, reflecting
the fact that the delay budget is used up. In the second elastic
phase, there is no reduction in appliance power. This illustrates
the fact that choosing a setpoint that is too low can result in
a undesirable outcome.

In Figure 4, the signal setpoint is set to 1200W which is
higher than P jmin and lower than P jn for both elastic phases.
When the power consumed by the dishwasher exceeds the
signal setpoint, the controller reduces the power consumption
to P 2

min. The controller then enables the resistive heating
element to find the setpoint in the first elastic phase. When
phase 4, which is elastic, begins, the controller reacts in the
same manner as in phase 2. However, after some time into the
operation of phase 4, the time budget depletes. At this point
the appliance controller returns the power consumption of the



Fig. 4. Load profiles of dishwasher when S = 1200W

heating element to P 4
n .

Although the appliance controller operates independent of
the way Sc(tn) is computed, the three examples in this section
show the importance of setpoint selection on the amount of
energy that will be consumed above the signal setpoint. A
setpoint that is too low can result in a perverse effect of
no reduction in the peak load. The result of this effect on
an ensemble of appliances is studied in our second example
below.

B. Large-scale study

In this section, we show results when using the appliance
controller for a region of 100 homes in Quebec. We use Monte
Carlo simulations for computing the results. Appliance prop-
erties used for the simulations are as in [5]. We assume that
all appliance controllers use the same membership functions
for interpreting the congestion degree of the grid as reflected
by Sc(tn).

Our chosen performance metric is the reduction in peaking
energy consumption, which we define as the reduction in
aggregate energy consumption conditional on the aggregate
appliance load exceeding the setpoint compared to the sit-
uation when appliances operate without the benefit of an
appliance controller. This is the magnitude of the decrease in
the amount of energy generated by high cost (or high carbon
footprint) generators due to peaks in the appliance load as
illustrated in Figure 5 (i.e., the value of the hatched area).

Signals are generated by the grid as Sc(tn) = PA(tn)
S where

PA(tn) is the aggregate power consumed at time tn and S is
the aggregate power setpoint, which corresponds to the crisp
threshold after which plants with high carbon emissions are
dispatched. Other parameters of the appliance controller are
fixed, as before, to x = 0.1, z = 0.2, ∆w = 5 and Pmin =
1
2P

j
n.

The results of our simulations are shown in Figure 6 where
the reduction in peaking energy consumption is shown as a
function of the setpoint S for different values of α. It is
clear that there are significant reductions in peaking energy
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Fig. 5. Illustration of the performance metric

Fig. 6. Results when using static signalling for 100 homes in Quebec

consumption during times of congestion for certain values of
S. This is true for all four comfort factors (i.e., the four values
of α). The greater the extension factor α, the greater are the
gains. We see that if the setpoint is high, no reduction in
peaking energy is either required or achieved. Interestingly,
when the signalling setpoint is set too low, there is no energy
reduction at all! This is because when the setpoint is too
low, the appliance controller reduces appliance power usage
quickly to its minimum value, thus consuming the appliance
delay budget very quickly. The controller subsequently ignores
control signals so that it does not violate user comfort re-
quirements. Consequently, the system behaves almost as if the
controller were not operating at all. This unexpected behaviour
is obviously not desirable: it is necessary to use an alternative
mechanism for signal generation, as discussed next since the
value of the setpoint cannot be chosen by the utility freely
since it reflects the threshold after which energy becomes
expensive.



V. GAINS USING ENHANCED SIGNALLING SCHEME

In this section, we propose an enhanced mechanism that
ensures that there is always a reduction in amount of peaking
energy consumption independent of the choice of the setpoint.
We do so by introducing a modified control signal that we
call the consistent congestion signal S′c(tn). Our modification
is based on the insight that if lowering the setpoint causes
a relative increase in peaking energy consumption then the
setpoint should not be lowered.

Specifically, in Figure 6 we found that when the setpoint
was set to an approximate average of the aggregate power con-
sumption, the gains were the greatest. Hence, in the proposed
signal generator we use the moving average of the aggregate
demand to compute the modified setpoint. We introduce a new
variable denoted as ema(tn) that represents an exponential
moving average of the aggregate load. ema(tn) is updated by
the signal generator every δ seconds according to Equation 2.

ema(tn) = (1− β) ∗ ema(tn−1) + β ∗ Pa(tn) (2)

where β is a tuning factor and Pa(tn) is the aggregate power
consumption in the region at time tn. At every timestep, the
signal generator at the utility updates ema(tn) and compares
ema(tn) with the chosen setpoint S. If ema(tn) < S, then
S′c(tn) = Pa(tn)

S else S′c = Pa(tn)
ema(tn)

.

Fig. 7. Results for using adaptive signalling for 100 homes in Quebec

In Figure 7, we show the results obtained for α = 1.1 when
the consistent congestion signal is used. The figure also shows
the previously discussed signalling mechanism. Both systems
use identical parameters. Additionally, for consistent signal
generation, we choose β = 1

1800 which captures the intuition
that the moving average should be computed over roughly
one hour. It is clear from Figure 7 that, with consistent signal
generation, even if a low setpoint is chosen, the gains from
using our appliance controller are not lost. This makes it much
easier for a system operator to choose a setpoint, in the firm
knowledge that this will not result in a perverse outcome.

To understand what the gains could mean in reality, we
next present the energy reductions in megawatt-hour (MWh)

for Quebec. When the setpoint is set to 10,000W, the energy
reduction gain for α = 1.1 is 35 MJ over a day as indicated
in Figure 7 for 100 homes. In Quebec, there are 3.2 million
households as of 2006 [12]. Hence, an average reduction of
the energy consumed above the setpoint of 12.96 MWh can be
expected in Quebec which is computed as follows 3.5∗107

24∗3600 ∗
3.2∗106

100 . These results are very significant and are obtained for
only a 10% increase in appliance operation duration, i.e., for
an appliance that operates for 50 minutes, this translates to an
extension of only 5 minutes, which may not even be noticed
by most consumers.

VI. CONCLUSIONS

In this paper, we have presented a novel demand response
mechanism that exploits appliance elasticity to decrease peak
loads. We present the design of a fuzzy-logic based controller
for appliances and a signal generator for the utility that
can reduce the power consumed by appliances with elastic
components that also have some delay budget remaining. We
have shown that the proposed appliance controller is effective
in being responsive to the state of the grid and allows for
reduction in energy consumption during congested periods.
Our proposed adaptive signal generator is able to result in
significant energy reductions even for lower setpoints.

Our proposed demand response scheme allows loads to
respond to grid congestion that arises either from excess
deman or a shortfall in generation. This behaviour not only
decreases the carbon footprint of the existing grid but will also
ease integration of new distributed generation resources.
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