
Does Compressed Sensing Improve the Throughput
of Wireless Sensor Networks?

Jun Luo Liu Xiang
School of Computer Engineering

Nanyang Technological University (NTU), Singapore
Emails {junluo,xi0001iu}@ntu.edu.sg

Catherine Rosenberg
Department of Electrical and Computer Engineering

University of Waterloo, Canada
Emails: cath@engmail.uwaterloo.ca

Abstract—Although compressed sensing (CS) has been envi-
sioned as a useful technique to improve the performance of
wireless sensor networks (WSNs), it is still not very clear how
exactly it will be applied and how big the improvements will
be. In this paper, we propose two different ways (plain-CS and
hybrid-CS) of applying CS to WSNs at the networking layer,
in the form of a particular data aggregation mechanism. We
formulate three flow-based optimization problems to compute
the throughput of the non-CS, plain-CS, and hybrid-CS schemes.
We provide the exact solution to the first problem corresponding
to the non-CS case and lower bounds for the cases with CS. Our
preliminary numerical results are only for a low-power regime.
They illustrate two crucial insights: first, applying CS naively
may not bring any improvement, and secondly, our hybrid-CS
can achieve significant improvement in throughput.

Index Terms—Wireless sensor networks, compressed sensing,
data aggregation, routing, scheduling.

I. INTRODUCTION

Improving the performance (in terms of throughput, life-
time, delay, etc.) of wireless sensor networks (WSNs) is a
recurring issue of the wireless networking community. It is
well known that proper data aggregation techniques1 may
significantly reduce the amount of data transmission load
carried by a WSN and may hence improve its performance
in every aspect. However, conventional aggregation techniques
have many drawbacks. First, if only statistical quantities such
as mean and max are extracted from the sensory data [1],
[2], other features of these data are lost and hence this ag-
gregation technique only applies to particular applications that
require limited information from a WSN. Secondly, distributed
source coding technique, such as Slepian-Wolf coding [3],
may be applied to allow non-collaborative data compression
at the sources, but the lack of prior knowledge of the data
correlation structure could render it impossible to perform the
coding operations. Finally, whereas collaborative in-network
compression makes it possible to discover the data correlation
structure through information exchange [4], [5], the resulting
high computation and communication load may potentially
offset the benefit of this aggregation technique.

In this paper, we consider the application of a new decen-
tralized compression technology known as compressed sensing

1We define data aggregation in a general sense. It refers to any transfor-
mation that summarizes or compresses the data acquired and received by a
certain node and hence reduce the volume of the data to be sent out.

(CS) [6], [7] to in-network data aggregation, and we only focus
on the network throughput as the objective. We first show
a naive application of CS where the encoding is performed
at every source. We then propose to apply CS only to relay
nodes that are overloaded. These are what we call respectively
the plain-CS and hybrid-CS schemes in the following. We
formulate three flow-based optimization problems to com-
pute the throughput of the non-CS, plain-CS, and hybrid-CS
schemes, and we provide the exact solution to the problem
corresponding to the non-CS case, as well as lower bounds
for the two cases with CS. In formulating these problems, we
assume that the transmission through wireless links can be
scheduled in a conflict-free manner, and we make use of an
SINR-based interference model. The resulting joint routing,
compression, and scheduling problem is notoriously hard, but
the tools that we have developed recently allow us to deal
with link scheduling problems of very large scale [8], [9] and
can be adapted to numerically solve the aforementioned three
problems (or certain simplified versions of them).

The contribution of our work, apart from formulating the
joint compression and scheduling problems, is the crucial in-
sights gained from the numerical solutions of these problems.
In particular, we show that applying CS naively may not bring
any improvement, while our hybrid-CS scheme can achieve
significant throughput improvement in the low-power regime.
Previous proposals to apply CS to WSNs are concerned
with either single-hop data aggregation [10] or efficient data
dissemination [11]. To the best of our knowledge, there has
been no prior work that has quantified the improvement in
throughput by applying CS as an in-network data aggregation
mechanism. Due to their high complexity, the optimization
models and tools that we propose can only be used for
offline studies. These offline studies are important because
of the engineering insights they deliver, which may provide
guidelines for practical designs.

The remaining of our paper is organized as follows. In
Section II, we briefly review the theory of CS and describe
how we model CS from a networking standpoint. We then
formulate the three problems for non-CS, plain-CS and hybrid-
CS in Section III. In Section IV, we show the numerical results
obtained from solving the problems for WSNs with a grid
topology. Finally, we conclude the paper in Section V.

2

II. OVERVIEW OF COMPRESSED SENSING

In this section, we first briefly introduce the basic theory of
CS, and then we explain in detail how we believe CS could
be applied as an in-network data aggregation mechanism for
WSNs.

A. Compressed Sensing Basics

As a novel sensing/sampling paradigm, CS theory asserts
that one can recover certain signals from far fewer samples
than what have been acquired from the sensors, if those
signals can be sparsely represented in a proper basis [6]. Let
us illustrate the idea in a WSN scenario. Assume a WSN
of n nodes, each node acquiring a sample (e.g., humidity)
xi. The ultimate goal of the WSN is to collect the vector
x = [x1, · · · , xn]T at the sink. We say x has an m-sparse rep-
resentation if there exists a proper basis Ψ = [ψ1, . . . , ψn]T ,
s.t. x =

∑m
i=1 ziψi and m� n. Now the CS theory suggests

that, under certain conditions, instead of collecting x, we may
collect y = Φx, where Φ = {φj,i} is a k × n “sensing”
matrix whose entries are i.i.d. zero-mean random variables
with variance 1

k . Consequently, we can recover x from y by
solving the convex optimization problem (‖z‖`1 =

∑
i |zi|)

min
z∈Rn

‖z‖`1 subject to y = ΦΨz (1)

and letting x = Ψẑ, with ẑ being the optimal solution of (1).
The condition that guarantees the correctness of this recovery
is given by

k ≥ C ·m · log n (2)

where C is some small constant. In particular, as suggested
by the “four-to-one” practical rule introduced in [6], k = 4m
is generally sufficient. Now, the meaning of “compressed” is
pretty clear: the sink needs to collect only k � n samples (as
m� n by assumption and k ≈ m) to reconstruct the sensory
data represented by the n samples.

According to the description above, Φ and Ψ are two
keys to applying CS in WSNs. Using pseudo-random number
generators to produce the entries of Φ, we can meet the i.i.d.
criterion while avoiding actually transmitting Φ by seeding
the generators using publicly known numbers. For example, if
we associate a specific generator (a publicly known algorithm
and its seed) with a node i, the i-th column of Φ, φi, can be
generated anywhere with consistent output. In particular, the
sink needs to store all the n seeds, such that it can generate
Φ in order to process the compressed data. Although the Ψ
that yields the sparsest representation of x may not be known,
wavelets are in general considered as a good candidate for Ψ,
as explained in [7]. For more advanced topics on CS theory,
we refer readers to [6], [7] and the references therein.

B. Compressed Sensing as Data Aggregation

In the remaining of our paper, we adopt a high level model
of CS. In particular, we call ρ = n

k the compression ratio
of CS. We assume ρ is constant (and known) as far as n ≥
nmin. Given the de facto four-to-one rule discussed above,

our underlying assumption is that, as far as n ≥ nmin, the
sparsity index m is proportional to the dimension n of a data
vector. Also, the knowledge of the constant ρ (for the given
n-dimensional data vector) can be obtained from past statistics
on the sensory data. Of course, these intuitive simplification
assumptions deserve further validation in the future.

We use Fig. 1 to illustrate the idea of CS-based data ag-
gregation as compared to conventional data collection (called
non-CS in the following). For the non-CS shown in Fig. 1(a),
a node receiving s− 1 packets (each packet corresponding to
a data sample from a node, and the value of s depending on
routing) will send out s packets (the s − 1 received packets
plus its own data sample); the sink, in particular, will need to
receive all the n samples. Hence in the non-CS scenario, the
load of a node is typically higher the closer it is from the sink.

CS-based network operation differs a lot from the non-CS
case. Using CS, the sink needs only to receive k packets
instead of n. Obviously, in order to use CS, each node i
needs to know the value of n, i.e., how many nodes participate
in the aggregation (could be the whole WSN or a subnet
if a partition has been performed, as we will explain later)
and the value of ρ. From these two values, it computes
k = n

ρ and generates locally k values φj,i (1 ≤ j ≤ k). It
then creates a vector xi[φ1,i, · · · , φk,i]T , where xi is its own
sensory data. Typically, node i will wait to receive from all
its downstream neighbors (i.e., i’s neighbors that have been
specified by routing to forward their data to the sink through
i) all the data they have to send before starting transmitting.
Each received packet is an element of a column vector of size
k similar to xi[φ1,i, · · · , φk,i]T and it carries its index from
1 to k so that it can be added to the data already waiting
in i with the same index (either locally produced or received
from a downstream neighbor). Then node i will send exactly
k packets corresponding to the aggregated column vector. As
long as routing is done to avoid duplications of packets, the
sink will receive exactly k aggregated packets that it will
transform back into a column vector x.

Now the difference between CS and non-CS operations
becomes clear: CS operation requires each node in the WSN
to send exactly k packets irrespective of what it has received,
which means, compared with non-CS, more work/load for the
nodes far away from the sink and less work/load for the nodes
close to the sink; the latter were, along with the sink, the main
bottleneck of the non-CS data collection. As our studies are
concerning offline network dimensioning, we assume a reliable
network, i.e., a network without packet losses. We leave the
issue of coping with unreliable links for future studies.

Note that it is not wise to perform the above CS operation
on the whole network since k = n

ρ may still be quite large.
This suggests that we should partition the WSN into subnets
and perform the CS operation independently in each subnet.
In addition, the easiest way to avoid duplication is to perform
routing on a spanning tree with the sink as the root. Now
there are clearly many ways to select such a spanning tree.
For example, given a WSN whose sink has a degree of δ, a
spanning tree may consist of δ subtrees, each rooted at one of

3

1
1

1

1

1

1
2

3

22

5

4

9

10

15

5
5

5

5

5

5
5

5

55

5

5

5

5

5

1
1

1

1

1

1
2

3

22

5

4

5

5

5

(a) Non-CS (b) Plain-CS (c) Hybrid-CS

24

18

8

6
Subnet

8

6
Subnet Subnet Subnet Subnet Subnet

Fig. 1. Comparison of different data collection mechanisms. The link labels correspond to the carried traffic. The underlined labels indicate CS encoded
traffic, assuming ρ = 3. The sink is represented by the hollow circle.

the δ children and having the same number of nodes ñ = n
δ (of

course building such a partition may not always be possible).
To apply CS on each subtree we need ñ ≥ nmin. In that case,
each subtree is responsible for sending k̃ = ñ

ρ < n
ρ packets

and the sink will then receive in total k packets as before, but
intermediate nodes in the network will take a much lower load
(k̃ = k

δ instead of k). We are not claiming that the best solution
is necessarily to create a balanced partition of δ subnets even
though we suspect that probably it is often true.

In the problem formulation described later, we will partition
the network into disjoint subnets and let individual subnets
aggregate data samples independently of the other subnets.
Such a partition is valid as far as the size of each subnet is
not smaller than nmin. We illustrate an unbalanced partition
(in particular on one of the subtrees) in Fig. 1(b). Note
that whereas the CS operation (along with routing) is done
independently on each subnet, the link scheduling should still
be performed globally, as the interference generated by a link
(no matter which subtree it belongs to) has a global impact on
the rest of the network. This makes our optimization problems
hard to solve even if we assume that the routing is determined
by predefined subtrees.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first define the models for various com-
ponents of a WSN, then we present the problem formulations.

A. Models and Assumptions

We model the WSN as a set N of nodes, with |N | = n, and
a sink Θ. Each node i ∈ N is associated with a geographical
location. We assume that (i) all nodes send sensory data
(through multihop routing if necessary) to the sink with
the same rate λ, (ii) time is slotted and all the nodes are
synchronized, and (iii) the network is operated in a conflict-
free and scheduled manner.

We assume that all the nodes have the same transmit
power Ptx and the same data-rate c. This is only for ease of
exposition; our approach does accommodate multiple powers
and rates. We assume that the channel gain from a node

i to another node j is quasi-static, since we consider fixed
wireless networks. For simplicity, we model the channel gain
as isotropic path-loss given by (

dij
d0

)−η where dij denotes the
distance from node i to node j, d0 is the near-field crossover
distance and η is the path-loss exponent. The feasibility of a
wireless link is based on whether a bit-error-rate (BER) less
than a tolerable maximum can be achieved on the link. We
assume that this BER requirement translates into a minimum
SINR (signal-to-interference-and-noise ratio) requirement cor-
responding to an SINR threshold β. We define L as the set of
all feasible links. Specifically, a link l = (i, j) is feasible (or
l ∈ L) if Ptx

N0
(
dij
d0

)−η ≥ β where N0 is the thermal noise power
in the frequency band of operation. Let |L| = L, and let lO
and lD denote the origin and destination of link l, respectively.

We use the following SINR-based interference model. Let
ζ ⊂ L denote a set of links. When all the links in ζ are
simultaneously active, the SINR perceived by link l ∈ ζ is
given by

γl(ζ) =
Ptx(

dlOlD

d0
)−η

N0 +
∑
k∈ζ\{l} Ptx(

dkOlD

d0
)−η

(3)

We say a set of links ζ is an independent set (ISet) if no two
links share the same node and, for every link l ∈ ζ, we have
γl(ζ) ≥ β. It is clear that all the links belonging to an ISet
can be scheduled at the same time in a conflict-free fashion.
We define I to be the collection of all ISets

I = {ζ|γl(ζ) ≥ β, ∀ l ∈ ζ} (4)

Let Il denote the set of ISets that contain link l. We use
the SINR-based interference model rather than other more
frequently used ones (e.g., protocol model) simply because
it is more realistic [12].

Let S denote the power set of L. A transmission schedule is
an |S|-dimensional vector α̂ = [αζ]ζ∈S , and we can interpret
αζ as the fraction of time allocated to a link set ζ. To make
a schedule conflict-free, we need αζ > 0 only if the set ζ is
an ISet (otherwise αζ = 0) and

∑
ζ∈I αζ ≤ 1. Therefore,

4

a conflict-free transmission schedule is an |I|-dimensional
vector α = [αζ]ζ∈I .

B. Throughput Maximization for The Case without CS

In the non-CS data collection, we formulate our joint routing
and scheduling problem as a regular flow optimization problem
where we can assume that there is only one many-to-one flow
ending at the sink. We define the link-set incidence matrix
Q = {ql,ζ}l∈L,ζ∈I

ql,ζ =

{
1 if l ∈ ζ ∈ I
0 otherwise.

(5)

Note that each column qζ of Q is a vector that represents an
ISet ζ and that the number of columns is |I| which is generally
very large. We also define the standard node-arc incidence
matrix A = {ai,l}i∈N ,l∈L

ai,l =

{
+1 or − 1 if i = o(l) or i = d(l)

0 otherwise.
(6)

Let rl be the amount of flow going over a link l, and denote
by r = [r1, · · · , rL]T the associated link flow vector. Given
the network model and the definitions, we want to maximize
the throughput of the many-to-one flow, which is formulated
in the following:

max
r,α≥0

λ (7)

Ar ≥ λ1 (8)
c ·Qα ≥ r (9)
αT1 ≤ 1 (10)

where 1 = [1, 1, · · · , 1]T . The problem explicitly maximizes
flow rate λ over all possible link flows r (or equivalently
routing) and link schedules α. Note that involving both the
flow conservation constraint (8) and the scheduling constraints
(9,10) yields a very general formulation that jointly takes
routing and scheduling into consideration. We will solve this
problem exactly in the following. Due to the space constraint,
we omit the discussions on how to cope with the huge
dimension of the matrix Q. Interested readers are referred to
[8], [9] for details. Note that the solution of this problem can
be viewed as an upper bound of the throughput achievable
by a WSN under non-CS case using a random access MAC
and/or a fixed routing.

As shown in Fig. 1(a), the non-CS data collection puts
an increasing load on nodes closer to the sink, as they have
to relay more data than those that are further. Consequently,
the bottlenecks in terms of throughput are usually located at
those “last-hop” nodes. Note that we use this scenario only to
illustrate the differences between the non-CS data collection
and CS-based data aggregations; we are not claiming that
the solutions for any problem formulated in this paper yield
necessarily the kind of partitions shown in the figure.

C. Throughput Maximization with Plain CS

As already described in Sec. II-B, one straightforward (but
naive) way of applying CS is the following: upon acquiring
a sensory data xi, node i generates a random vector φi and
sends xiφi+

∑
j∈Πi

xjφj , where Πi is the set of downstream
neighbors of i. In the best possible case, the transmissions
are sequenced so that a node h hops away from the sink has
received data from all its downstream (i.e., h+1 hops) neigh-
bors before encoding and sending the data. Translated into a
flow model, this yields a totally egalitarian load allocation, as
every link carries the same flow rate kλ, where k, as explained
in Sec. II, is the dimension of φi. We illustrate this idea by
Fig. 1(b), where k = 5 (as n = 15 for the represented subnet
and ρ = 3 by assumption).

We will assume single-path routing in the following even
if it is not strictly a requirement. This effectively means that
the routing optimization should be done by choosing the best
partition and then the optimal spanning tree for each subnet
of a WSN. Let T be a node disjoint tree cover of N . Let
Ti ∈ T be a tree rooted at a node i that is one-hop from the
sink Θ. Let T̂ be the extended tree cover such that, for T̂i ∈ T̂ ,
V (T̂i) = V (Ti) ∪ {Θ} where V (T) is the set of vertices of
tree T and E(T̂i) = E(Ti) ∪ {(i,Θ)} where E(T) is the set
of edges of tree T . We apply CS to each T̂i with an identical
ρ, which can only be done if ni ≥ nmin where ni = |V (Ti)|.
In other words, for l ∈ E(T̂i), the traffic load is ni

ρ λ. Now
the throughput maximization becomes

max
α≥0; T:ni≥nmin, ∀Ti∈T

λ (11)

c
∑
ζ∈I

ql,ζαζ ≥ ni
ρ
λ

{
∀ l ∈ E(T̂i)

∀ T̂i ∈ T̂
(12)

αT1 ≤ 1 (13)

Here we put T as the routing optimization variable, which
replaces the flow conservation (8) used for the non-CS case.
The link load kiλ on the RHS of (12) depends on the size ni of
the sub-tree Ti (whose extension T̂i includes the link l under
consideration), as ki = ni

ρ . By this we mean to jointly search
for the optimal tree cover and the optimal scheduling upon it.
Unfortunately, the tree cover problem is in general very hard
[13]. Therefore, we later solve the problem by fixing a “good”
tree cover and obtain the optimal schedule upon it. This gives
us a feasible solution that can be seen as a lower bound on
the optimal solution for problem (11-13).

D. Throughput Maximization with Hybrid CS

It can be observed that directly applying CS in the way
suggested in Sec. III-C creates too much load in the earlier
stages of the data collection. More precisely, starting coding
right from the leaf nodes of a tree might be counter-productive
as they have to transmit k packets for each data sample
as opposed to one packet in the non-CS case. Hence we
propose a hybrid-CS policy to improve the performance: the
non-CS scheme is applied in the earlier stages of the data
collection (starting from the leaf nodes), and the CS-based

5

−37 −36 −35 −34 −33 −32 −31 −30 −29 −28 −27
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10−3

P
tx

 (dBm)

O
pt

im
al

 th
ro

ug
pu

t λ
*

Non−CS
Plain−CS
Hybrid−CS

Maximum achievable throughput for non−CS

−37 −36 −35 −34 −33 −32 −31 −30 −29 −28 −27
0

0.2

0.4

0.6

0.8

1

1.2

x 10−3

P
tx

 (dBm)

O
pt

im
al

 th
ro

ug
hp

ut
 λ

*

Non−CS
Plain−CS
Hybrid−CS

Maximum achievable throughput for non−CS

(a) Grid network with a sink at the center. (b) Grid network with a sink at one corner.

Fig. 2. Throughput comparison among non-CS, plain-CS, and hybrid CS.

compression is only applied at a node whose incoming traffic
intensity becomes larger or equal to kλ. This idea is explained
by Fig. 1(c). Therefore, an intermediate node might have to
encode multiple data samples coming from its child nodes.
This will be done by generating locally the column vector φ’s
for each sample.

We continue using the terminology defined in Sec. III-C.
Let Πi,j be the set of child nodes of node j (including j
itself) in Ti. It is clear that, according to our hybrid-CS
policy, the outgoing links of node j will carry a load of
λmin

(
|Πi,j |, ni

ρ

)
, where the first term refers to the flow

conservation in the non-CS data collection, and the second
term indicates the use of CS to encode the data. Now the
throughput maximization is slightly different from (11–13):

max
α≥0; T:ni≥nmin, ∀Ti∈T

λ (14)

c
∑
ζ∈I

ql,ζαζ ≥ min

(
|Πi,lO |,

ni
ρ

)
λ

{
∀ l ∈ E(T̂i)

∀ T̂i ∈ T̂
(15)

αT1 ≤ 1 (16)

The optimal solution can be obtained by jointly searching
for the optimal tree cover and the optimal scheduling upon
it, which is at least as hard as solving problem (11–13).
Therefore, we, again, solve the problem later by decoupling
the tree cover from the scheduling upon it. This gives us a
feasible solution that can be seen as a lower bound on the
optimal solution for problem (14-16). According to Fig. 1(c), it
is clear that hybrid-CS combines the advantage of both non-CS
and plain-CS: it gets rid of the excessive load at leaf nodes by
applying non-CS at an earlier stage of the data collection, and
it uses CS to reduce the load carried by the last-hop bottleneck.

IV. NUMERICAL RESULTS

We assume a grid network of 1225 (35×35) nodes (includ-
ing the sink), and we consider two cases differing in terms of
the position of the sink: one at the center and another at one
corner. We assume that the distance between two closest nodes
is 8m. For radio propagation, we assume N0 = −100dBm,
d0 = 0.1m, and η = 3. Also, we fix the rate c = 1, take
β = 6.4dB, and we investigate the optimal throughput as a
function of Ptx. The computations for all the cases start at
the transmit power Pmin that just allows the network to be
connected. Note that, although each value of Ptx ≥ Pmin may
not yield a new set of links (hence a new topology), it might
produce new ISets. Let the degree of the sink be δ(Ptx) for a
given Ptx.

For the cases with CS, we need to create a partition so that
each subnet has at least nmin nodes. This means that when
Ptx increases, even if δ(Ptx) increases, the number of subnets
in the partition will not grow beyond n

nmin
. For our current

computations, we use Dijkstra’s algorithm to generate the tree
cover T (which decouples routing from link scheduling), and
we set ρ = 5. It is trivial to see that, as Ptx keeps increasing,
the sink will have more and more one-hop neighbors and hence
there will be more trees in a tree cover. We do not allow a
partition in which one of the subtrees becomes too small, i.e,
ni < nmin = 150. We have limited our computations to low
values of Ptx since our computational tool requires a memory
space larger than what a 32-bit program can handle (recall that
the joint scheduling problem is on the whole network that has
1225 nodes and thus there is a huge set of potential ISets when
Ptx is large). We have started to upgrade our tool to 64-bit to
allow us to tackle larger transmit powers.

The results for both cases are shown in Fig. 2. The black
lines in both figures show the maximum achievable throughput
of non-CS data collection if we keep increasing Ptx until

6

every node has a direct link to the sink. It is clear from the
comparisons that plain-CS might not yield higher throughput
than non-CS, but hybrid-CS will definitely bring a significant
improvement (apart from certain points that we will discuss
later). One may argue that it is not fair to compare a lower
bound on the throughput of plain-CS to the optimal throughput
of non-CS. Although this is true, what our preliminary results
illustrate is the importance of performing CS carefully if
substantial throughput gains need to be achieved. Of course,
increasing ρ will improves the performance of both plain-
CS and hybrid-CS. However, assuming ρ = 5 implies that
m ≤ k

4 = n
20 , which is already quite sparse for realistic

sensory data set. Therefore, we are not expecting a significant
increase in ρ.

The figures also show one major problem with using Di-
jkstra’s algorithm to generate T : it always seeks the min-hop
routing greedily. Whenever new links are created due to a
transmit power increase, the algorithm will produce a tree
cover using these new links. Unfortunately, as these links have
just been created, their SNRs are too low to allow spatial
reuse with other links. This explains the big “falls” in the
curves at Ptx = −31.75dBm: they correspond to the transmit
power where the first “diagonal” links are created. Note that,
at the maximum power shown in the figures (i.e., −27.5dBm),
only links between closest neighbors and across the shortest
diagonal are feasible. In order to show that the “falls” were
due to the way we constructed the tree cover and not to an
inherent problem with either the CS schemes or the particular
network topology, we computed the performance of the plain-
CS and hybrid-CS schemes at powers greater than −32dBm
by fixing T to be the one computed for Ptx = −32dBm
(i.e., at a power level that does not make the shortest diagonal
links feasible). Clearly while we have a fixed T , we are still
allowing the scheduling to take full advantage of a higher
transmit power that may create new ISets. As expected, the
performances with a fixed T (represented by the circles in the
figures) do not exhibit any decrease. For an arbitrary network
topology, we expect the same phenomenon to persist as far
as we use Dijkstra’s algorithm to generate T ; using a grid
topology simply amplifies it and hence allows us (and the
readers) to observe it easily.

V. CONCLUSION

In this paper, we investigate the benefit of applying com-
pressed sensing (CS) to data collection in wireless sensor
networks (WSNs). We first describe a naive way of applying
CS called plain-CS, then we propose a hybrid-CS scheme that
combines conventional data collection (non-CS) with plain-
CS. We formulate and solve three flow-based optimization
problems that characterize the throughput under the three
schemes. The most important insights we acquired from
this study are: (i) applying CS naively may not bring any
improvement, and (ii) our hybrid-CS can achieve significant
improvement in throughput as compared with non-CS. Our
preliminary numerical results are only for a low-power regime.

It will be part of our future work to develop better parti-
tioning strategies for our hybrid-CS scheme. Also, we need
to validate some of the assumptions made in the paper using
realistic sensory data. Moreover, we will be looking at the
combination of the physical layer CS (e.g., [11]) and our
networking layer CS to further improve the throughput of
WSNs. Finally, we will also study how CS could benefit other
performance metrics of WSNs, such as lifetime and delay.

REFERENCES

[1] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: A Tiny
AGgregation Service for Ad-hoc Sensor Networks,” ACM SIGOPS
Operating Systems Review, vol. 36, no. SI, 2002.

[2] J. Gao, L. Guibas, N. Milosavljevic, and J. Hershberger, “Sparse Data
Aggregation in Sensor Networks,” in Proc. of the 4th ACM IPSN, 2007.

[3] D. Slepian and J. Wolf, “Noiseless Encoding of Correlated Information
Sources,” IEEE Trans. on Information Theory, vol. 19, no. 4, 1973.

[4] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer,
“Network Correlated Data Gathering with Explicit Communication:
NP-completeness and Algorithms,” IEEE/ACM Trans. on Networking,
vol. 14, no. 1, 2006.

[5] H. Gupta, V. Navda, S. Das, and V. Chowdhary, “Efficient Gathering of
Correlated Data in Sensor Networks,” ACM Trans. on Sensor Networks,
vol. 4, no. 1, 2008.

[6] E. Candès and M. Wakin, “An Introduction To Compressive Sampling,”
IEEE Signal Processing Mag., vol. 25, no. 3, 2008.

[7] J. Haupt, W. Bajwa, M. Rabbat, and R. Nowak, “Compressed Sensing
for Networked Data,” IEEE Signal Processing Mag., vol. 25, no. 3, 2008.

[8] J. Luo, A. Girard, and C. Rosenberg, “Efficient Algorithms to Solve a
Class of Resource Allocation Problems in Large Wireless Networks,” in
Proc. of the ICST WiOpt, 2009.

[9] J. Luo, C. Rosenberg, and A. Girard, “Engineering Wireless Mesh
Networks: Joint Scheduling, Routing, Power Control and Rate
Adaptation,” IEEE/ACM Trans. on Networking (to appear), 2010,
http://www3.ntu.edu.sg/home/junluo/documents/TMPAlgo.pdf.

[10] M. Rabbat, J. Haupt, A. Singh, and R. Nowak, “Decentralized Com-
pression and Predistribution via Randomized Gossiping,” in Proc. of the
3th ACM IPSN, 2006.

[11] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressive Wireless
Sensing,” in Proc. of the 3th ACM IPSN, 2006.

[12] A. Iyer, C. Rosenberg, and A. Karnik, “What is the Right Model for
Wireless Channel Interference?” IEEE Trans. on Wireless Communica-
tions, vol. 8, no. 5, 2009.

[13] G. E. amd N. Garg, J. Könemann, R. Ravi, and A. Sinha, “Min-Max
Tree Covers of Graphs,” Elsevier Operations Research Letters, vol. 32,
no. 4, 2004.

