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Abstract

For wireless networks with multiple sources, an omnidice@! relay scheme is developed, where
each node can simultaneously relay different messagedferatit directions. This is accomplished by
the decode-and-forward relay strategy, with each relagpibgithe multiple messages to be transmitted,
in the same spirit of network coding. Specially for the allisce all-cast problem, where each node
is an independent source to be transmitted to all the othdesg)athis scheme completely eliminates
interference in the whole network, and the signal trangmitty any node can be used by any other
node. For networks with some kind of symmetry, assuming reariferming is to be performed, this
omnidirectional relay scheme is capable of achieving th&imam achievable rate.

|. INTRODUCTION

In wireless networking, relay is a way of expanding commatan range or increasing
communication rate, with the help of other nodes. As suchrenmodes are involved and more
signals will be transmitted. It is therefore important tosidg@ and coordinate these signals to
maximize the cooperation and minimize the interferencawBen the two fundamental relay
strategies proposed inl[1], especially, the decode-anwlafiml strategy enables the destination
node to fully enjoy the transmitted power of both the sourocelenand the relay node. This
is still realizable when multiple relays are introduced ®iphthe destination [2], [3],[]4], and
interference can be completely eliminated for arbitraldsge networks.

However, the situation is much more complicated when theeenaultiple sources in the
network [5]. Unlike the case of a single source where all soale essentially transmitting the
same information, multiple sources seem inevitably resulhterference. Nevertheless, studies
of the two-way relay channel [6]| [7] have indicated the flosisy of no interference even if
there are more than one sources.

In this paper, we develop an omnidirectional relay schemeavfceless networks with multiple
sources, where, each node can simultaneously relay diffenessages in different directions.
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This is accomplished by binning multiple messages at ealdy,ras a generalization of the
scheme proposed inl[7], in the same spirit of network cod8jg [

The basic idea of network coding![8] can be explained withftilewing example. Suppose
that nodeA wants to send out two bits of informatidn and by, with b; to node B, and b,
to nodeC. However, if nodeB already knows, and nodeC' already knows,, then this can
be accomplished by just sending out one lQith b, to both nodeB and nodeC, since node
B can recoveb; by computingb, @ (b; @ b)) = by, and nodeC' can recovel, by computing
by @ (by @ by) = bs.

This scheme can be generalized with the technique of binf@ihhgConsider the problem that
node A wants to send out two messages and w,, with w; to node B, and w, to nodeC,
where, w; can take); different values andv, can takeM, different values, and possibly,
M, # M,. Similarly, assume that nod8 already knows the true value af,, and nodeC
already knows the true value af;. Instead of sending out both the messages w-), which
can be any of thel/; M, different vectors, nodel can throw these vectors intd/ bins, with
M = max{M;, M5}, and send out the index of the bin that contains the true wectdhis way,
node A only needs to send out a message withdifferent values. It can be easily checked that
when M > max{M;, M}, it is possible to bin the\/; M, different vectors of{w;, ws) in such
a way that in each bin, no two vectors contain the samer the sameu,. Therefore, knowing
the true value ofw,, and the bin that contains the true value(ef;, w;), node B can uniquely
determine the true value af,. Similarly, nodeC' can uniquely determine the true valueof.

The above binning scheme can be easily generalized to sgnditanber of messages. In
the context of wireless relay networks, nodecan be a relay that wants to forward different
messages to different nodes. With the binning techniqude abonly needs to send one signal
representing the bin index, from which, different recesvean pick up different messages based
on their differenta priori knowledge of the messages. Furthermore, with this binnangse,
it is also shown in[[7] that every receiver can fully expldit the signal power, as if nodd is
only sending those messages unknown to it.

Node A can also use other ways to relay multiple messages, e.g.upsrosition coding.
It can first encode each message individually by a signal, taed superpose them together
into a layered signal to transmit. Upon receiving this lagesignal, each receiver can pick out
the layers that correspond to the unknown messages, byirdetée layers that correspond to
the messages already known. Compared to the binning schemebvious drawback of this
superposition scheme is that the total transmit power oenbdthas to be clearly divided among
the messages, and each receiver can only exploit the paisthaed for its unknown messages.



However, this way of clearly layering different message&esdt easier to establish cooperation
between different transmitters. For example, to send theesmessage to a common receiver,
beamforming or coherent transmission can be establishiedebe two transmitters so that the
received power can be boosted. On the other hand, this isoredsy to realize with the binning
scheme unless the two transmitters are sending exactlyathe set of messages.

Using superposition coding to establish coherent trar@oniswas originally proposed inl[1]
for the relay channel. It was later extended to the case witktiphe relays [2], [3], [4], and
to the two-way relay channell[6]. It can also be applied to aegal framework with multiple
sources, relays and destinations [5]. However, the cooretipg achievable rate regions become
extremely messy for general networks, when there are tog hagers of signals to consider. In
this paper, we only consider the binning technique in the idirectional relay scheme.

As a special application which may be the best to demonstratebenefit of this binning
scheme, we consider the all-source all-cast problem, wi&ech node is an independent source,
to be sent to all the other nodes. We will show that for suclblers, it is possible to completely
eliminate interference in the network, and each node wilbethe power transmitted by all the
other nodes.

The remainder of the paper is organized as the following. éctiSn[ll, we introduce a
general framework of omnidirectional relay with arbitraspurce-destination distributions in
mind. Starting from Section_lll, we will focus on the all-goe all-cast problem. First, a special
version of the omnidirectional relay scheme is develope&eaation Ill for the all-source all-
cast problem. Then a key technical lemma is presented indBdl¥] before we prove some
achievability results in Sectidn]V. Finally, some conchglremarks are presented in Secfion VI.

[I. AN OMNIDIRECTIONAL RELAY SCHEME

Consider a wireless network af nodesN = {1,2,...,n}.
Consider the following AWGN wireless network channel model
Yi(t) = g Xi(t) + Z;(t), VjEN, t=12 .. (1)
%

where, X;(t) € C' andY;(t) € C! respectively denote the signals sent and received by Node
i € N at timet; {g;,; € C' : i # j} denote the signal attenuation gains; af¢) is zero-mean
complex Gaussian noise with variande Note that we are considering a full-duplex model, i.e.,
nodes can transmit and receive signals at the same time.ugowewill be clear that the main
results of this paper can be easily extended to half-dupledets.



Consider the networking problem where each node\ wants to send the same information
at rate R; (can be zero) to all the nodes in a sub%gtc N. Or reversely, each nodec N
wants to receive the information sent by all the nodes in seuiesetS; C N. To achieve this,
we design an omnidirectional relay scheme as the following.

We choose a sequence of decode-sets and encode-sets fanaekcin A in the following
order. First, for each nodee N, choose a subset df"\{:} as its 1-hop decode-s&,;), and
then choose a subset ¥,y as its 1-hop encode-séf). That is,

iy € Dy € M\{i}.
Then, for each nodéc N, choose its 2-hop decode-set and encode-set as

Diyy © M\ {i}UDy}
Eimy S {Diay U Diggy } \Ei)

Sequentially, fork = 3,4, ..., L, whereL is some selected finite integer, node k-hop decode-
set and encode-set are chosen as

We use block Markov coding. Considét blocks of equal length, and in each blogk=
1,2,..., B, denote the message of nodey w;(b), which is encoded at rat&;.

In block 1, each nodé transmits its own message(1). At the end of block 1, each node
decodes the messages sent by the nodes of its 1-hop dedpde-sw;(1) : j € D;)}.

In block 2, each nodétransmits{w;(2), we, ,, (1)} using the binning technique, whete, ,, (1)
stands for{w;(1) : j € &qu)}. That is, besides its own messagg(2), node: also helps
transmitting the previous-block messages of the nodesifi-tiop encode-set, which have been
decoded by node since&;1y C D;1). At the end of block 2, each nodedecodes the block-2
messages of the nodes in its 1-hop decode-set and the blmglsdages of the nodes in its 2-hop
decode-set, i.e{uwp,,(2), wp,, (1)}

Sequentially, in block = 3,4, ..., each node transmits{w;(b), we,,, (b—1), ..., we,, , (1)}
using the binning technique, and decodes, , (), ..., wp,, (1)} at the end of block, where,
let &) = Diw) = 0 whenb > L, and always seivy(l) = () for any ! > 1.

To implement the above omnidirectional relay scheme, weussnregular encoding/sliding-
window decoding with random binning at each node, as has b®eohin several simple networks
in [7]. Note that random binning can be replaced by detestimibinning that is easier to
implement, although random binning is simpler to describ¢he achievability proof.



In order to successfully carry out the above omnidirecticletey scheme, obviously, the
necessary and sufficient condition is that at the end of elactkb = 1,2, 3, .. ., every node € N
can successfully decodgwp,, (b), ..., wp,, (1)}. This is essentially a multi-block multiple-
access problem, which will be discussed in detail in Sedfifin

Apparently, the result of successfully carrying out the atractional relay scheme foB
blocks, with B > L such that(B — L)/B ~ 1, is that each nodé receives the messages
generated by all the nodes in the @ilei(k), approximately at their initial rates. Therefore,
the original networking problem is solved as long&sc Uﬁzl Dy for all i € V.

Hence, the key step in the design of the omnidirectionalyrslegheme is the selection of
appropriate decode-sets and encode-sets. The sizes afedsets are restricted by the decoding
requirement, but should be large enough to finally coverhadl intended source nodes. Larger
encode-sets result in more messages being helped, but romase the decoding burden to
some nodes that may not be interested in all the messagasinitructive to note that finally,
for any nodei, the signals transmitted by all the nodesUéj:1 D, are decoded, either as useful
messages, or as useless messages but not causing intsfesdrle the signals transmitted by
all the nodes inV\ |J,_, Di() are not decoded, thus causing interference.

[1I. THE ALL-SOURCE ALL-CAST PROBLEM

In order to demonstrate the benefit of the omnidirectionlEyrescheme, in this paper, we
focus on the special networking problem where all the nodesralependent sources and each
node wants to send its information to all the other nodes enrtetwork. That is, we consider
the special case whefg = AV\{i} for all : € N, or equivalently,S; = NM'\{i} for all i € N.
Naturally, this can be named as the all-source all-castlgnobTo simplify the studies, we only
address the case where all rafgsare equal to some common rake

We make a very general assumption on the signal attenuatenonly assume that longer
distance, higher attenuation. That is, there is a non-astng function to relate the magnitude
of the gains in[(ll) to the distance:

|9:.41 = g9(di ), (2

whered, ; is the distance between nod@nd nodej, andg(-) is some non-increasing function.
For simplicity, we assume the same transmit power constrdifor all the nodes. Therefore,
when a nodée is transmitting at its full power, the corresponding reeeiypoower at another node
j is g P.

We will show that for the all-source all-cast problem, it issgible to completely eliminate
interference in arbitrarily large wireless networks, artle node can make use of the signals



transmitted by all the other nodes. More importantly, wel whow the achievability of the
following common rate for the all-source all-cast probleon §ome network topologies by the
omnidirectional relay scheme:

mjin Ei;&j ‘9@',3"2]3
log | 1+

R<n—1 N

3)

Obviously, >, l9:.;]*P is the total received power at nodeif the signals transmitted by
different nodes didn’t add up coherently at the receivelis Mill be the case if independent
codebooks are used at different nodes. Theim,; >_, . |g:;|*P corresponds to the node whose
total received power is the least. Since every node needsdode all the other — 1 sources,
(3) clearly is the highest common raigachievable for the all-source all-cast problem according
to the Shannon formula.

It may be possible to achieve higher rates thdn (3) by usimgeleded codebooks at different
nodes to boost the received power at some nodes, say, by cx@aimg or coherent transmission.
A method is by using superposition coding as mentioned inltii®duction. However, this
may be hard to implement in practice due to, e.g., the lackhahnel state information at the
transmitters. Moreover, note that cooperating signals mymsesent the same information in order
to cooperate, which means that they cannot help the trasemisf other different messages.
This may not be a good choice for the all-source all-cast [probwhere the messages to be
transmitted by any two nodes are not completely the same.

We will show that the ratd {3) is achievable for networks vatime kind of symmetry, which
include the network depicted in Figl 1 where the nodes aralgv@paced. In the following,
we first develop a special version of the omnidirectionahyedcheme for the all-source all-cast
problem, where network topology is taken into consideratio
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Fig. 1. A regular network.

A. A distance-regulated omnidirectional relay scheme

We introduce the concept @f-hop neighbors in the network in the following way. Firstr fo
each node, define a set of nodes in its neighborhood as its 1-hop nerghlamd denote the



set as\;1). The way of defining 1-hop neighbors depends on the netwquidégy and will be
specified later on for different networks. If noges a 1-hop neighbor of nodg it is said that;

can reach in one hop. If furthermore; is a 1-hop neighbor of node then it is said thaj can
reachl in two hops. Similarly, it can be said that a node can reachih@noode ink hops, for
any positive integek. Now, for each node, its k-hop neighbors is defined as the set of nodes
that can reach it ik hops, but not in any less hops, and denote this séf;as. Mathematically,
Nk can be sequentially defined as

Niwy ={J : j € Ny for somel € N1y, 4)
andj ¢ {i} UNiq) U -+ UNjg-n}.

It is clear that for any network of a finite number of nodesye¢his a finite number.; for each
i € N, such thatV) = 0 for k > L;.

We use block Markov coding. In block 1, each nadeansmits its own message(1). At the
end of block 1, each nodedecodes at least the messages sent by its 1-hop neighbaib) :
j € Nigy} (Maybe more can be decoded). In block 2, each nottansmits{w;(2), wx;,, (1)}
using the binning technique, where for simplicityy; (1) stands for{w;(1) : j € Njq)}. At
the end of block 2, each nodalecodes at least the block-2 messages of its 1-hop neighhdrs
the block-1 messages of its 2-hop neighbors, e, (2), wx;, (1)}. In block 3, each node
i transmits{w;(3), wy;,,, (2), wx,,, (1)} using the binning technique. Generally, in bldgkeach
noded transmits{w;(b), wy,,,(b—1),...,wx;,_,, (1)} using the binning technique, and decodes
at least{wy;,,(b), ..., wx,, (1)} at the end of block, where, when the block number is large
enough such that, = 0, wy(l) = 0 for any ! > 1.

Obviously, &) corresponds toV;, in this special version, whil®;, can be arbitrary as
long as

EyU---U&w) € Diy U ---U Dy, for anyi € N andk > 1.

In order to solve the all-source all-cast problem where ewmte needs to decode the messages
of all the other nodes, for the networks to be discussed ini@e¥], we will choose the 1-hop
neighbor set ;) : i € N'} in a way such that for anye N,

UN = N\{i}. (5)

To show that this scheme works for some networks, we stalt avikey technical lemma in
next section, which discusses a multiple-access decodiagdoon multiple blocks.



IV. KEY TECHNICAL LEMMA: MULTI-BLOCK MULTIPLE-ACCESS

Consider an AWGN multiple access channel

V()= Xi(t) + Z(1), (6)
ieM
where, M = {1,2,...,m} denotes the set of sources.
According to the well known multiple-access capacity red@ Ch.14], a rate vectdzy, ..., R,,)
is achievable if and only if the inequality
> R; <log (1 + 267]\;913) (7)

=
holds for all non-empty subsets C M. Namely, if each sourcé € M encodes its message
w; at rate R; with independent Gaussian block codeword$wX) with power P;, then [T) is the
necessary and sufficient condition such that, w,, ..., w,,} can be decoded, in the sense that
the decoding error can be made arbitrarily small by increagine block length.

Obviously, [T) needs to hold for all nonemp$yC M in order to decoddw;, ws, ..., w,,}.
However, it may not be so commonly recognized that as lon§/lpbdlds for the oneS = M,
there must be some nonempty subse{of, w,, ..., w,} that can be decoded. This is formally
stated as the following lemma.

Lemma 4.1: For the multiple access channkl (6), with each soureeM sending a message

w; at rateR; with power P;, there always exists some nonempty subsetaf w,, ..., w,,} that
can be decoded, as long as the following inequality holds:
P
> Ri<log (1 + Z%) (8)
iEM

i.e., (@) withS = M.
Proof: We use a contradiction argument. Suppase (7) doesn’t holddme A C M, i.e.,

a1 b

ZRiZIOg (1—1—2267“4). (9)

; N

ieA

Then taking the difference betwedn (8) ahd (9), we have

1c B

> R <log (1 + Zi) (10)
Ny

i€ AC
where, A° = M\ A, andN4 = >, , P+ N. Now, by comparing[(10) witi({8), we arrive at the
same situation a§|(8) with1 replaced byA¢, and N replaced byN 4. Similarly, if the inequality
es i
> R; <log (1 + 2675) (11)

ics Na



holds for all nonemptyS C .A¢, then the subset of messaggs; : i € A°} can be decoded;
Otherwise, if[(11) doesn't hold for sontg¢ C .A¢, the process can be continued wigh= A\ B.
As the size of the subset decreases, we must be able to reachempty subset where all
the necessary inequalities of the typel(11) hold, and thesrtessages can be decoded. This is
obvious, since if the process continues without stoppihgyust reach a subset with only one
source, and by then, the single inequality likel(10) suffimesthe decoding.
Therefore, we proved that if](8) holds, there must exist aengoty subsetM, C M such
that {w; : i € M} can be decoded, whilgw; : i € M;} with M; = M\ M, cannot. [ ]
Now, in our block Markov coding setting with relays, the nedeelp each other to transfer
messages. To put into this perspective, let us consider ékwak decoding situation where in
the first block{w;(1) : i € M5} are decoded whilg¢w;(1) : i € M;} are not, and in the second
block, each node € M, helps transmitting some messages frém (1) : i € M;} besides its
own message;(2). The goal now is to decodgw;(2) : i € My} U{w;(1) : i € M;} at the end
of the second block. In consistency with our notation egrtlenotew v, (1) = {w;(1) : i € My},
W, (2) = {w;(2) : i € My}, and{wa, (2), wa, (1)} = {wi(2) : i € Mo} U{w;(1) :i € My}.
Denote J; C M as the set of nodes that nodéelps in the second block, i.e., nodsends
a codeword_X(w;(2), w7 (1)) by binning the multiple messages in the second block. Relers
denoteZ; C M as the set of nodes that will help nodéo transmitw;(1) in the second block.
For any subsef C M, letS; = SN M;, and let
Sy = (SN M) U (| Zin M), (12)
1€S1
That is, S, also consists of nodes fromvt, that may not be inS, but are helping transmitting
ws, (1). Then, it can be easily verified with a typical sequence aentrthat{wa,(2), waq, (1)}
can be decoded if and only if for any nonempty sukSe&t M,
Dics, Ui 2ics, i
;Ri < log (1 + T) + log (1 + A N) (13)
where the first term is the contribution of the nodesSinfrom the first block, and the second
term is the contribution of the nodes 3 from the second block. Actually, it is rather instructive
to think of the constraintg (13) for all nonempfyC M as a two-block multiple-access region.
Although it is necessary that the inequality(13) shoulddHok all nonemptyS € M in order
to decode{w,(2),wa, (1)}, as in the case of one-block multiple-access discussereare
will show that the following single inequality

> Ri<log (1 + M) + log (1 + EZZEMQ b ) (14)

ieM N iem Bt N
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i.e., (13) withS = M, is enough to ensure that some nonempty subsgtuaf, (2), wa, (1)}
can be decoded.
We still use a contradiction argument.[If {13) holds for ahemptyS C M, then{w,(2), w, (1)}
can be decoded; Otherwise, if for some nonemyty M, (13) doesn't hold, i.e.,
2ica b 2ica i
;Ri > log <1+ EN ) + log (1+ZierPi+N) (15)
then taking the difference betwedn14) ahdl (15), we have
Ez’eAi b ZzeAg b

ZEZA;cRi < log (1 + S PN N) + log (1 + S P Y P N) (16)
where, A° = M\ A, A = M\ A;, and A5 = M,\ A,. By the definition [(IR), it simply follows
that A C A; U A, and A° D AfU.AS. Hence, by replacingl® with A§ U A$ in the left-hand-side
of (18), we have

Dicas b Dicas i
Ri<log|l+ =———F—— | +log|1+ 2 . @n
Z ( ZiGAl R +N EieAz PZ + EiGMl R +N

I€ASUAS
This is the same situation as {14) witht replaced by.AS U A5, M; replaced by.AS, M,
replaced by.A45, and some adjustment of the noises. Now, the messages todoelede are
{wag(2),was(1)}. As in the case of one-block multiple-access discussedegaslich a process
can be continued until we find a nonempty subsefwf.,(2), wa, (1)} that can be decoded.
Therefore, we proved that the inequality(14) alone enstln&isthere always exists a nonempty
subset of{wa,(2),wp, (1)} that can be decoded. Note that by combining the two terms @n th
right-hand-side,[(14) becomes

> Ri<log (1 + Zeijyp) (18)
iEM

which is exactly the same dg (8). In other words, the inetyu@@ or (18) makes sure that there
are always some messages that can be decoded, no matteemihistione-block multiple-access,
or two-block multiple access with relays.

It is now clear that generally we have the following conatusfor K-block multiple-access
with relays.

Lemma 4.2: Consider a/-block decoding situation wherauay, (K),...,wa, (1)} are to be
decoded for some disjoint subsetd,, £ = 1,..., K with Uff:l/\/lk = M, or equivalently to
say, that{wa, (k — 1),...,war, (1)} have been decoded fdr= 2, ..., K. During each block
k=2,...,K, every nodel € M, helps transmitting a subset §fvor, ,(k —1),...,wa, (1)}
besides its own message (k) with the binning technique. Then there is always a nonempty
subset of{w,. (K), ..., wpr, (1)} that can be decoded if (1L8) holds.
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V. NETWORKS WITH SYMMETRIC TRAFFIC

After the discussion of last section, it is clear that no erdtibow complicated the relay situation
is, at the end of each block every nodei can always decode the new messaggs) of a
nonempty set of node§;(b) C N, under the condition[{3). (More detailed arguments about
this will be presented in the proof of Theoréml5.1). Then ideorto successfully carry out the
distance-regulated omnidirectional relay scheme preseint Sectiori_Ill, we only need to make
sure that for each € N/

Niay € Gi(b), foralb=1,...,B. (29)

Due to the monotonicity of the power attenuation modél (2gssages sent by nodes that
are closer are generally easier to decode, and therefosenatural to chooseV;,) as a set
composed of the closest nodes. In view of the requirenien)t (L& preferable to put as few as
possible nodes intd/;;). However, for the all-source all-cast problem, ea¢h, should contain
sufficiently many nodes so thatl (5) holds, i.e., the wholevodt will be covered and each node
will decode the messages of all the other nodes.

When we are sure that there are some nodes whose messagesdsnoted but not knowing
how many of them there are, it is not clear whether the messaigall the nodes inV;(;) can be
decoded if\;(;) contains more than one nodes. However, there is a speaiatisit where we
can be sure, i.e., when there is some kind of symmetry to alhtides inV;(, in the sense that
if one of them can be decoded, the others certainly can. Tmplsiexamples of this are shown
in Fig.[2, where clearly, for any node the traffic is symmetric on both sides. For each nade
by choosingV;;) as its two neighboring nodes, which are mostly easy to dedbdke certain
that both of them can be decoded. Sinick (5) obviously holdthisydefinition, the all-source
all-cast problem for these networks is solved under the itiond(3).

Fig. 2. Two symmetric networks.
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The network depicted in Fig. 1 is not completely symmetrior Bny node not in the center,
i.e.,i # (n+ 1)/2, the traffic on one side is heavier than the other side. Hoxyélrere is still
some kind of symmetry as we will show later on, so that any boandary node ¢ {1,n} can
decode the messages of both its neighlers 1,7+ 1} simultaneously, under the conditidd (3).

We will first prove this for more general network topologiesd then the regular topology in
Fig. [ will follow as a simple corollary. Alternatively, arict proof for the regular network in
Fig. 1 has been presented in [10].

Fig. 3. A general one-dimensional network.

Consider a general wireless networkrohodes located on a straight line, labeled sequentially
by 1,2,...,n, as depicted in Fid.]3. It is convenient to introduce the tiata

by = |gi,j|2P
for anyi,j € {1,2,...,n}.
For any node: ¢ {1,n}, let its 1-hop neighbors bd/;1y = {i — 1,7+ 1}. Let Ny1y = {2}
and NV, 1y = {n — 1}. We will show that the distance-regulated omnidirectioreday scheme

presented in Sectidn ]Il works for this one-dimensionalwmek as long as the common rafe
satisfies[(B) and the following two symmetric sets of constsafor everyi € {2,3,...,n— 1}:

) Forany/=1,...,7— 2, at least one of the following two inequalities holds:
Puit-+ Po+ Pyrit -+ Pu
(l+n—i)R < log(1+ S +N RE ) (20)
. Pipri+ -+ Py
or — 1 1 : : 21
(n—i)R < 0g< +P1,i+-~-—|—PM+N) (21)

i) Foranyr =i+ 2,...,n, at least one of the following two inequalities holds:
Pl,i+"'+Pi—1,i+Pr7i+"'+Pn7i) 22)
N

P+ 4+ P, )
P+ -+ P+ N
In other words, we have the following theorem.

Theorem 5.1: For the one-dimensional wireless network, a common fate achievable for
the all-source all-cast problem with the omnidirectiorelay scheme, if it satisfie§](3), and also
for everyi € {2,3,...,n — 1}, the above constraints i) and ii) hold.

(i+n—r)R < log(l—i-

or (t—1)R < log (1 + (23)
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Proof: With the distance-regulated omnidirectional relay scheneonly need to show that
at the end of each block every nodei can decodeu;, (b).

Obviously, for any node and at the end of any block there are a sequence of disjoint
subsetsM,, k = 1,...,b (can be empty) with J_, M, = A"\ {i} such that{w,, (b), wa, , (b—
1),...,wp, (1)} are to be decoded, or equivalently to say, thak, (k—1),...,wa, (1)} have
been decoded for any = 2,...,b in the previous blocks. Then according to Lemmd 4.2, there
must exist a nonempty subset @by, (b), waq, ,(0—1),...,wa, (1)} that can be decoded, due
to

N (24)

which follows from [3). If this nonempty subset is disjoinitivw,, (b), then after the decoding,
we arrive at a similar situation with another sequence ojotis M), & = 1,...,b with
U2_, My, = N\{i}. Then Lemmd 42 can be applied again with] (24) so that moresages
can be decoded. This process can be continued as long asleB mo\ '\ {:} have messages to
be decoded. In other words, finally, there must be a nonemgiges M; C N\{i} such that
w: (b) can be decoded at the end of bldgk

According to the relay structure and the monotonicity ofgbever attenuationM; can only be
one of the following three types of subsets of nodés:..,i—1} for somel < ¢; {i+1,...,r}
for somer > 4; or {¢,...,i—1,i+ 1,...,r} for somel < i < r. This is simply based on
the observation that on either side, it is always easier tmdie messages from nodes closer. If

Pui+ -+ Piyi+ Pai -+ P
(n—l)R<log(1+ B . )

i is a boundary node, i.el, or n, then only one of the first two types is possible and clearly
Niay € M;. Now, for a non-boundary nodec {2,3,...,n — 1}, all three types are possible.
If M; is of the third type, then clearly\;) C M; and the proof is finished. IM; is of the
first type, then LemmB_4.2 still can be applied with either) (@0(21) continually untikw, ()
is decoded. Note that the casel(21) is different from (20hadense that there is no intension
to decode the messages of the nodés. .., ¢}, and their transmissions are treated as noise.
Actually, they may not be all causing interference in alldi®, and hence, the condition needed
to apply Lemma 4]2 may be weaker thanl(21). Symmetricallyait be shown that,_;(b) will
be decoded based on eitherl(22) [or] (23)Mf; is of the second type. Therefore, we've shown
thatwy;,, (b) will always be decoded. This concludes the proof. |
Now, we show that for the regular network in Fig. 1, any ratésang (3) must satisfy the
constraints i) and ii). Thus, the rate (3) is achievable.
Due to the equal separation distanfzeand the power gain modell(2), it is convenient to define

P, = g(idy)P  foranyi > 1.
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Then, P, ; = P,_; for anyi # j. According to the monotonicity of the functioy(-), we have
P>P>--->P, . (25)

With this new notation,[(3) becomes
log <1+ P1+P2+...+Pn_1)

R<n_ (26)

N
where, the total received power corresponds to any one didbadary nodes, and is the smallest
among all the nodes. The constraints i) and ii) become: Feryeve {2,3,...,n — 1},

)] Forany/=1,...,1— 2, at least one of the following two inequalities holds:
P+ Y " P
(l+n—i)R < log<1+zjlé NZ ) (27)
. Zn ZP
or (n—9)R < log|1+ (28)
Z] =i— ZP +N
i) Foranyr =i+ 2,...,n, at least one of the following two mequalities holds:
P+
(i+n—r)R < log( Z NZ] S > (29)
Zz 1 P
or (t—1)R < log|1+ (30)
> P+ N

Now, we verify that at least one df (27) arid {28) must holdstrinote that by the concavity
of the logarithmic function, it follows from(25) and_(26)ahfor anyl < k <n — 1,

P +P+...+ P
k;R<1og<1+ Bk e k) (31)
N
Specially, wherk =i — 1, we have
P+P+...+ P
(i—l)R<log<1+ Lt 2+N i 1). (32)

If i —¢<n-—i+1, by (28), we have

n—i+~t

ZP+ZP>ZP

j=i—¢

and thus, by[(31) withk = ¢ + n — ¢, (21) holds. OtherW|se, if —¢>n—1i+ 1, we check the

following inequality -
Y =7
(R < log (1 + LJ—]’V‘Z ”) . (33)
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If (B3) holds, then by[(32),[(25) and the concavity of the ldidemic function, [27) follows.
Otherwise, if [3B) doesn't hold, i.e.,

i—1
-1 p
(R > log (1 + %) , (34)

taking the difference betweeh (32) and](34), we have
Yo B )
Yisi-e P+ N

G=i—t

(1—1—=4)R < log <1 + (35)

Then again by[(25) and the concavity of the logarithmic fiorgtwe have[(28).

Similarly, by symmetry, we can show that at least oneof (28) 80) must hold. Therefore,
we arrive at the following theorem.

Theorem 5.2: For the one-dimensional regular wireless network in Elgthg, common rate
(28) is achievable for the all-source all-cast problem wite omnidirectional relay scheme.

7

e O

1 3 5 [ ]
° ° ® o °

6
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Fig. 4. A general network with nodes clearly ordered by dista
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1 ° 3 ° ° °

) ° ° °

Fig. 5. A regular network with a clear ordering of nodes bytatise.

Remark 5.1: In all the arguments above, obviously, it is not necessaryaliothe nodes to be
located on a straight line, as long as they can be clearlyredde terms of the distances, i.e.,
there is a way of labeling the nodes so thaf < d;; for anyi < j < k, ork < j < i. One
such example is shown in Figl 4, and a regular case is showigifBFIn such cases, Theorem
or[5.2 still applies.

VI. CONCLUSION

We developed an omnidirectional relay scheme for wireledsvorks with multiple sources,
where each node can simultaneously relay multiple messag#ifferent directions by binning
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them into a single signal. This scheme also exploits thedwast nature of wireless commu-
nication, such that one node helps multiple nodes, and phelliodes help one node. In the
extreme, this scheme is capable of completely eliminatimgrierence in the whole network,
and specially, for the all-source all-cast problem whetaredssages are of interest, each node
can benefit from the signals transmitted by all the other soiée also demonstrated some kind
of optimality of this scheme by showing that it achieves theximum rate possible for some
networks if no beamforming is performed.

We proposed a distance-regulated networking frameworkchwivas shown to work well for
some networks. To deal with more general problems, the berjloods can be selected not only
based on the topology, but also on other factors such as tinenaaication rates, interference,
etc. It is also possible to make the omnidirectional relayrfework presented in Sectibm Il more
general by introducing layered coding structure at eaclenddis will admit superposition coding
for beamforming, and will also make it possible to transnfiedent messages for different nodes,
as in the basic scheme for the broadcast channél [11]. Muohins to be done.
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