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Abstract— For wireless networks with multiple sources, an
omnidirectional relay scheme is developed, where each node
can help relay multiple sources in different directions. This is
accomplished by the decode-and-forward relay strategy, with
each relay binning the multiple messages to be transmitted,
in the same spirit of network coding. Specially for the all-
source all-cast problem, where each node is an independent
source to be transmitted to all the other nodes, this scheme
completely eliminates interference in the whole network, and
the signal transmitted by any node is used by any other node.
For networks with regular topologies, assuming no beamforming
is to be performed, this omnidirectional scheme is capable of
achieving the maximum achievable rate.

I. INTRODUCTION

In wireless networks, relay is a technique where a node

can simultaneously exploit the signals transmitted by multiple

nodes. Between the two fundamental relay strategies proposed

in [1], especially, the decode-and-forward strategy makes it

possible for the destination node to fully make use of the

signal powers transmitted by both the source node and the

relay node. This is still realizable when multiple relays are

introduced to help the destination [2], and interference can be

completely eliminated for arbitrarily large networks.

However, relaying becomes much more complicated when

there are multiple sources in the network [3]. Unlike the case

of a single source where all nodes are essentially transmitting

the same information, multiple sources seem inevitably result

in interference. Nevertheless, studies of the two-way relay

channel [4], [5] indicate the possibility of no interference even

if there are more than one sources.

In this paper, we develop an omnidirectional relay scheme

for wireless networks with multiple sources, where, each

node can simultaneously relay different sources in different

directions. This is accomplished by binning multiple messages

at each relay, as a generalization of the scheme proposed in

[5]. The idea is basically the same as network coding. The

superposition coding approach proposed in [4] can also be

generalized. However, the coding schemes become much more

involved in general networks and will not be considered here.

As an application, we are especially interested in the all-

source all-cast problem, where each node is an independent

source, to be sent to all the other nodes. We will show

that for such problems, it is possible to completely eliminate

interference in the network.

II. OMNIDIRECTIONAL RELAY SCHEME

First, we introduce a general omnidirectional relay scheme.

Consider a wireless network of n nodes N = {1, 2, . . . , n}.
We introduce the concept of k-hop neighbors in the network

in the following way. First, for each node i, define a set of

nodes in its neighborhood as its 1-hop neighbors, and denote

the set as Ni(1). The way of defining 1-hop neighbors depends

on the network topology and will be specified later on for

different networks. If node j is a 1-hop neighbor of node i,
it is said that j can reach i in one hop. If furthermore, i is

a 1-hop neighbor of node l, then it is said that j can reach l
in two hops. Similarly, it can be said that a node can reach

another node in k hops, for any positive integer k. Now, for

each node i, its k-hop neighbors is defined as the set of nodes

which can reach it in k hops, but not in less hops, and denote

this set as Ni(k). Mathematically, Ni(k) can be sequentially

defined as

Ni(k) = {j : j ∈ Nl(1) for some l ∈ Ni(k − 1),
and j /∈ {i} ∪ Ni(1) ∪ · · · ∪ Ni(k − 1)}.

We use block Markov coding. In block 1, each node i
transmits its own message wi(1). At the end of block 1,

each node i decodes at least the messages sent by its 1-hop

neighbors {wj(1), j ∈ Ni(1)}. (It could decode more.) In

block 2, each node i transmits (wi(2), wNi(1)(1)) using the

binning technique, where for simplicity, wNi(1)(1) stands for

{wj(1) : j ∈ Ni(1)}. At the end of block 2, each node

i decodes at least the messages of its 1-hop neighbors in

block 2 and the messages of its 2-hop neighbors in block 1,

i.e., (wNi(1)(2), wNi(2)(1)). In block 3, each node i transmits

(wi(3), wNi(1)(2), wNi(2)(1)) using the binning technique.

Generally, in block b, each node i transmits (wi(b), wNi(1)(b−
1), . . . , wNi(b−1)(1)) using the binning technique, and decodes

(wNi(1)(b), . . . , wNi(b)(1)) at the end of block b, where, when

the block number is large enough such that Ni(b) = ∅,
w∅(l) = ∅ for any l.

To realize the above omnidirectional relay scheme, we

can use the regular encoding/sliding-window decoding with

random binning at each node, as has been used in several

simple networks in [5]. Note that backward decoding cannot

be used here, since each node must not wait in decoding in

order to help. This observation is exemplified in detail with a

two-way multi-relay network in [3]. However, random binning

can be replaced by deterministic binning that is easier to

implement, although random binning is simpler to describe

in the achievability proof.
For any network, obviously, the above omnidirectional relay

scheme can work if the rates are small enough. However, our
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interest lies in finding network topologies where omnidirec-

tional relay is really beneficial.

In this paper, let us consider the following AWGN wireless

network channel model:

Yj(t) =
∑
i∈N
i �=j

gi,jXi(t) + Zj(t), ∀ j ∈ N , t = 1, 2, . . .

(1)

where, Xi(t) ∈ C
1 and Yi(t) ∈ C

1 respectively denote the

signals sent and received by Node i ∈ N ; {gi,j ∈ C
1 : i �= j}

denote the signal attenuation gains; and Zi(t) are zero-mean

complex Gaussian noise with variance N .

We make the following assumption on the magnitude of the

gains:

|gi,j | = g(di,j), (2)

where di,j is the distance between node i and node j, and g(·)
is an arbitrary non-increasing function. That is, we assume that

the magnitude of the gains only depends on the distance, and

is non-increasing as the distance increases.

Specially, we are interested in the achievability of the

following common rate for the all-source all-cast problem by

the above omnidirectional relay scheme:

R <
1

n− 1
log

⎛
⎝1 +

min
j

∑
i �=j |gi,j |2P
N

⎞
⎠ (3)

where, P is the individual transmit power constraint at each

node. Obviously,
∑

i �=j |gi,j |2P is the total received power at

node j if no beamforming is performed, i.e., all the nodes

are using independent codebooks. Then, minj

∑
i �=j |gi,j |2P

corresponds to the node which receives the least total power.

Since every node needs to decode all the other n− 1 sources,

(3) immediately gives an upper bound on the common achiev-

able rate R for the all-source all-cast problem according to the

Shannon formula.

It may be possible to achieve higher rates than (3) by using

correlated codebooks at different nodes, say, by beamforming.

An approach is the superposition coding of multiple messages

at the relay proposed in [4] (see [6] for the right formula).

However, cooperating signals must represent common infor-

mation in order to cooperate, which means that they cannot

help the transmission of other different messages. This may

not be a good choice for the all-source all-cast problem, where

the messages to be transmitted by any two nodes are not

completely the same.

III. ONE-DIMENSIONAL REGULAR NETWORKS

Due to limited space, we focus our discussion on one-

dimensional regular networks in this paper.

Consider a wireless network of n nodes located on a straight

line, with an equal separation distance d0 between any two

neighboring nodes as depicted in Figure 1.

Since by the assumption (2), power attenuation only de-

pends on the distance, it is convenient to define

Pk = |g(kd0)|2P, for k = 1, . . . , n− 1.

1 2 3 4 5

Fig. 1. A one-dimensional regular network.

Obviously, when node i is transmitting at power P , the

corresponding received power at node j is P|i−j|.
Due to the monotonicity of the gain function g(·), we have

P1 ≥ P2 ≥ · · · ≥ Pn−1.

For any node i /∈ {1, n}, let its 1-hop neighbors be Ni(1) =
{i−1, i+1}. Let N1(1) = {2} and Nn(1) = {n−1}. We will

show that the above omnidirectional relay scheme works for

this one-dimensional regular network as stated in the following

theorem.

Theorem 3.1: For the one-dimensional regular wireless net-

work, with the omnidirectional relay scheme, the following

common rate is achievable for the all-source all-cast problem:

R <
1

n− 1
log

(
1 +

P1 + · · ·+ Pn−1

N

)
. (4)

Obviously, P1 + · · ·+ Pn−1 is the total power received by

the boundary nodes 1 or 2, which according to the topology,

receive the least.

In order to prove that the omnidirectional relay scheme

works for this topology at the rate (4), essentially, we need

to ensure that the decoding at every node is successful, i.e.,

at the end of each block b, every node can decode w(b) of its

1-hop neighbors, w(b−1) of its 2-hop neighbors, and so on. If

the decoding is successful up to the current block, the encoding

for the next block can always be carried out. Hence, we can

recursively prove the success of the decoding at each block,

based on the assumption of the success of all the previous

blocks.

First, we show that the decoding is successful at the

boundary nodes 1 and n. These two nodes are unique in the

way that to them, all information comes from one direction.

A. Unidirectional

Due to symmetry, we only need to address node 1 in the

following.

Basically, we need to prove the condition:

C1) By the end of block b, node 1 can decode w(b) of

node 2, w(b − 1) of node 3, . . ., w(b − n + 2) of

node n.

Consider the following type of inequalities:

iR < log
(

1 +
P1 + · · ·+ Pi

Ii+1 + N

)
(5)
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where Ii+1 := Pi+1 + · · · + Pn−1. Assume 1 ≤ i1 < i2 <
· · · < im = n − 1 is the sequence of i ∈ {1, 2, . . . , n − 1}
for which the inequality (5) holds, where (5) at least holds for

i = n− 1 due to (4).

Define nodes {2, 3, . . . , i1 + 1} as Group 1; nodes {i1 +
2, . . . , i2 + 1} as Group 2; . . ., nodes {im−1 + 2, . . . , im + 1}
as Group m.

Actually, we will show that at the end of block b, node 1

can decode w(b) of the nodes in Group 1, w(b − 1) of the

nodes in Group 2, . . ., w(b −m + 1) of the nodes in Group

m. This certainly implies that the condition C1) is satisfied.

In block 1, every node transmits its own message w(1). We

will show that at the end of block 1, node 1 can decode w(1)
of the nodes in Group 1, due to the following inequalities:

R ≥ log
(

1 +
P1

I2 + N

)
(6)

2R ≥ log
(

1 +
P1 + P2

I3 + N

)
(7)

...

(i1 − 1)R ≥ log
(

1 +
P1 + · · ·+ Pi1−1

Ii1 + N

)
(8)

i1R < log
(

1 +
P1 + · · ·+ Pi1

Ii1+1 + N

)
(9)

which follow from (5). First, taking the difference between

the last inequality and any of the previous ones in (6)-(9), we

have

R < log
(

1 +
Pi1

Ii1+1 + N

)
(10)

2R < log
(

1 +
Pi1−1 + Pi1

Ii1+1 + N

)
(11)

...

i1R < log
(

1 +
P1 + · · ·+ Pi1

Ii1+1 + N

)
(12)

Noticing that P1 ≥ P2 ≥ · · · ≥ Pi1 , according to the multiple-

access region, by (10)-(12), node 1 can decode w(1) of the

nodes in Group 1.

Now, in block 2, assuming all the nodes have successfully

decoded in block 1, each node will send w(2) of itself together

with w(1) of its 1-hop neighbors. Especially, note that node

i1 +1 will help w(1) of node i1 +2. We will show that at the

end of block 2, node 1 can decode w(2) of Group 1, and w(1)
of Group 2, due to the inequalities (6)-(9) and the following

inequalities:

(i1 + 1)R ≥ log
(

1 +
P1 + · · ·+ Pi1+1

Ii1+2 + N

)
(13)

...

(i2 − 1)R ≥ log
(

1 +
P1 + · · ·+ Pi2−1

Ii2 + N

)
(14)

i2R < log
(

1 +
P1 + · · ·+ Pi2

Ii2+1 + N

)
(15)

which still follow from (5). Still, taking the difference between

the last inequality and any of the previous ones in (13)-(15),

we have

R < log
(

1 +
Pi2

Ii2+1 + N

)
(16)

2R < log
(

1 +
Pi2−1 + Pi2

Ii2+1 + N

)
(17)

...

(i2 − i1 − 1)R < log
(

1 +
Pi1+2 + · · ·+ Pi2

Ii2+1 + N

)
(18)

Moreover, taking the difference between (15) and (8), we have

(i2 − i1 + 1)R < log
(

1 +
Pi1 + · · ·+ Pi2

Ii2+1 + N

)
(19)

Now, to see that the inequalities (10)-(12) and (16)-(19) ensure

that at the end of block 2, node 1 can decode w(2) of Group

1 and w(1) of Group 2, notice that this is a multiple-access

channel with two blocks. In block 1, without considering w(1)
of node i1 + 1, the inequalities (16)-(18) ensure the multiple-

access region. With considering w(1) of node i1 +1, the help

of node i1 in block 2 will be considered, which can make use

of the inequality (19). Finally, nodes of Group 1 can take care

of their own w(2) in block 2, due to (10)-(12).

Proceeding in a similar way, we can show that generally,

at the end of block b, node 1 can decode w(b) of Group 1,

w(b − 1) of Group 2, . . ., w(b − m + 1) of Group m. This

ensures the condition C1).

B. Bidirectional

Now, we consider nodes not on the boundary. For each of

them, information comes from both directions.

1) Symmetric: First, we consider the center node n+1
2 in

the case where n is an odd number. The proof for this node

is simpler due to that the traffics on both sides of this node

are symmetric.

Denote nc = n+1
2 . Basically, we need to prove the condi-

tion:

C2) By the end of block b, node nc can decode w(b)
of nodes nc ± 1, w(b − 1) of nodes nc ± 2, . . .,
w(b− nc + 2) of nodes {1, n}.

On either side of node nc, the powers received can be

ordered as P1 ≥ P2 ≥ · · · ≥ Pnc−1. Similarly to (5), now

we consider the following type of inequalities:

2iR < log
(

1 +
2P1 + · · ·+ 2Pi

I ′i+1 + N

)
(20)

where I ′i+1 := 2Pi+1 + · · ·+ 2Pnc−1. Assume 1 ≤ i1 < i2 <
· · · < im = nc − 1 is the sequence of i ∈ {1, 2, . . . , nc − 1}
for which the inequality (20) holds, where (20) holds for i =
nc − 1 due to (4).

Define nodes {nc±1, . . . , nc±i1} as Group 1; nodes {nc±
(i1 + 1), . . . , nc ± i2} as Group 2; . . ., nodes {nc ± (im−1 +
1), . . . , nc ± im} as Group m.
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We will show that at the end of block b, node nc can decode

w(b) of the nodes in Group 1, w(b−1) of the nodes in Group

2, . . ., w(b−m + 1) of the nodes in Group m. This certainly

implies that the condition C2) is satisfied.

By (20), similarly to (10)-(12), we have

2R < log
(

1 +
2Pi1

I ′i1+1 + N

)
(21)

4R < log
(

1 +
2Pi1−1 + 2Pi1

I ′i1+1 + N

)
(22)

...

2i1R < log
(

1 +
2P1 + · · ·+ 2Pi1

I ′i1+1 + N

)
(23)

which, due to the property of the logarithmic function, also

imply that

R < log
(

1 +
Pi1

I ′i1+1 + N

)
(24)

3R < log
(

1 +
Pi1−1 + 2Pi1

I ′i1+1 + N

)
(25)

...

(2i1 − 1)R < log
(

1 +
P1 + 2P2 + · · ·+ 2Pi1

I ′i1+1 + N

)
(26)

Hence, by (21)-(26), node nc can decode w(1) of Group 1 at

the end of block 1.

Again, by (20), similarly to (16)-(19), we have

2R < log
(

1 +
2Pi2

I ′i2+1 + N

)
(27)

4R < log
(

1 +
2Pi2−1 + 2Pi2

I ′i2+1 + N

)
(28)

...

2(i2 − i1 − 1)R < log
(

1 +
2Pi1+2 + · · ·+ 2Pi2

I ′i2+1 + N

)
(29)

2(i2 − i1 + 1)R < log
(

1 +
2Pi1 + · · ·+ 2Pi2

I ′i2+1 + N

)
(30)

which, again due to the property of the logarithmic function,

also imply that

R < log
(

1 +
Pi2

I ′i2+1 + N

)

3R < log
(

1 +
Pi2−1 + 2Pi2

I ′i2+1 + N

)
...

(2i2 − 2i1 − 3)R < log
(

1 +
Pi1+2 + 2Pi1+3 + · · ·+ 2Pi2

I ′i2+1 + N

)

2(i2 − i1)R < log
(

1 +
Pi1+1 + 2Pi1+2 + · · ·+ 2Pi2

I ′i2+1 + N

)

+ log
(

1 +
Pi1

I ′i1+1 + N

)
(31)

where, the last inequality follows from (29)-(30), and the

following inequality:

log
(

1 +
Pi1

I ′i1+1 + N

)
+ log

(
1 +

Pi1+1

I ′i1+2 + N

)
>

log
(

1 +
Pi1

Pi1 + I ′i1+1 + N

)
+ log

(
1 +

Pi1+1

Pi1+1 + I ′i1+2 + N

)
.

Similarly, these inequalities ensure that at the end of block 2,

node nc can decode w(2) of Group 1 and w(1) of Group 2.

Especially, the inequality (31) ensures that when considering

w(1) of nodes nc ± (i1 + 1), the helps of nodes nc ± i1 in

block 2 are enough.

Proceeding in a similar way, we can show that generally,

at the end of block b, node nc can decode w(b) of Group 1,

w(b − 1) of Group 2, . . ., w(b − m + 1) of Group m. This

ensures the condition C2).

2) Non-Symmetric: Now, we consider the other non-

boundary nodes, for which the traffics on both sides are

generally non-symmetric.

Without loss of generality, consider any node k ≤ n/2.

Basically, we need to prove the condition:

C3) By the end of block b, node k can decode w(b) of

nodes k± 1, . . ., w(b− k + 2) of nodes {1, 2k− 1},
w(b − k + 1) of node 2k, . . ., w(b − n + k + 1) of

node n.

According to Figure 1, the received powers from left to

right can be listed as Pk−1 ≤ Pk−2 ≤ · · · ≤ P1 = P1 ≥
· · · ≥ Pn−k.

Similarly, consider the following type of inequalities:

2iR < log
(

1 +
2P1 + · · ·+ 2Pi

I ′′i+1 + N

)
, when i ≤ k − 1; (32)

(k − 1 + i)R <

log
(

1 +
2P1 + · · ·+ 2Pk−1 + Pk + · · ·+ Pi

I ′′i+1 + N

)
when k ≤ i ≤ n− k. (33)

where I ′′i+1 := 2Pi+1+· · ·+2Pk−1+Pk+· · ·+Pn−k. Assume

1 ≤ i1 < i2 < · · · < im = n − k is the sequence of i’s for

which the above inequalities hold.

Similarly define Group 1, Group 2, . . ., Group m.

If the inequality (32) doesn’t hold for i = k − 1, i.e.,

2(k − 1)R ≥ log
(

1 +
2P1 + · · ·+ 2Pk−1

I ′′k + N

)
,

then, we have

[n− 1− 2(k − 1)]R < log
(

1 +
Pk + · · ·+ Pn−k

N

)
,

which means that the extra nodes in the long side (i.e., the

right side in the case that k ≤ n/2) can support themselves.

Then, similar to the above, at the end of block b, node k can

decode w(b) of Group 1, w(b−1) of Group 2, . . ., w(b−m+1)
of Group m.

Now, we only need to consider the case where the inequality

(32) holds for i = k − 1. Suppose ij = k − 1. Then at the
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end of block j, node k decode w(j) of Group 1, . . ., w(1) of

Group j.

To proceed further, now the decoding process runs into

non-symmetric situations. Here, the key difference from the

symmetric situations is that the long side has more sources to

support by itself. If the long side can still decode group by

group, then there is no problem, and everything is as before.

Now, suppose at the end of block j + 1, node k cannot

decode w(1) of Group j + 1, which means

(ij+1 − ij + 1)R ≥ log

(
1 +

Pk + · · ·+ Pij+1

I ′′ij+1+1 + N

)

+ log

(
1 +

Pk−1

Pk + · · ·+ Pij+1 + I ′′ij+1+1 + N

)

= log

(
1 +

Pk−1 + Pk + · · ·+ Pij+1

I ′′ij+1+1 + N

)
. (34)

Here, we consider the case that nodes 1 and 2k − 1 didn’t

need help themselves, i.e.,

2(k − 2)R ≥ log
(

1 +
2P1 + · · ·+ 2Pk−2

I ′′k−1 + N

)
.

Hence, by (33) with i = ij+1,

[ij+1−(k−1)+2]R < log

(
1 +

2Pk−1 + Pk + · · ·+ Pij+1

I ′′ij+1+1 + N

)
.

(35)

Taking the difference between (34) and (35), and noting that

ij = k − 1,

R < log

(
1 +

Pk−1

Pk−1 + Pk + · · ·+ Pij+1 + I ′′ij+1+1 + N

)
,

which means that the message of node 1 can still be decoded

even if that of node 2k− 1 cannot. Similarly, messages of all

the previous nodes can be decoded.

In the next block, the long side gets another helper node

2k − 2 according to the encoding scheme. Still if

(ij+1 − ij + 2)R ≥ (36)

log

(
1 +

Pk−2 + Pk−1 + Pk + · · ·+ Pij+1

I ′′ij+1+1 + N

)

it is not sufficient to decode messages of nodes 2k − 2 and

2k−1. However, the short side can still be completely decoded

with the same reasoning.

For example, consider the case that nodes 2 and 2k − 2
didn’t need help themselves, i.e.,

2(k − 3)R ≥ log
(

1 +
2P1 + · · ·+ 2Pk−3

I ′′k−2 + N

)
.

Then, similar to (35),

[ij+1 − (k − 1) + 4]R < (37)

log

(
1 +

2Pk−2 + 2Pk−1 + Pk + · · ·+ Pij+1

I ′′ij+1+1 + N

)
.

Similarly, taking the difference between (36) and (37),

2R < log

(
1 +

Pk−2 + Pk−1

Pk−2 + Pk−1 + · · ·+ Pij+1 + I ′′ij+1+1 + N

)

which (together with (35)-(37) applied to Pk−1) means that

the messages of nodes 1 and 2 can still be decoded even if

those of nodes 2k − 2 and 2k − 1 cannot.

The long side continues moving backward until a node

where the long side can support itself. (This must happen,

since without interference from the short side, the long side

can always support itself due to (4).) Then the long side

continues to move to the right. Now we can completely ignore

the short side, and consider only the long side with some

nodes knowing their neighbors. The situation is similar to

the unidirectional case except that it starts with some nodes

already obtaining the messages of their neighbors.

The key observation in the arguments about the non-

symmetric case is that the short side can always be decoded

and then the long side can be considered separately. With this

clarified, we omit the lengthy details corresponding to different

subcases.

IV. DISCUSSIONS

More specific assumptions on the power gains are needed

when trying to achieve (3) for networks with irregular topolo-

gies. Generally, larger networks can tolerate higher irregular-

ities.

Although the all-source all-cast problem may not be a

typical situation in practice, it can be used sometimes as

an intermediate step for other applications. For example, it

is the situation when the nodes in a local cluster want to

exchange their quantized observations, after they, together as

a virtual multiple-antenna receiver, received signals simulta-

neously transmitted by their respective sources.

It should be noted that the omnidirectional relay scheme is

not restricted to the all-source all-cast problem, and it can also

be applied to networks where not all the nodes are sources.

In such cases, the common achievable rate can be higher than

(3); however, it is not by simply replacing n − 1 with the

number of sources.
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