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Abstract—For a wireless network with � nodes distributed in
an area �, and with � source–destination pairs communicating
with each other at some common rate, the hierarchical cooperation
scheme proposed in (Ozgur, Leveque, and Tse, 2007) is analyzed
and optimized by choosing the number of hierarchical stages and
the corresponding cluster sizes that maximize the total throughput.
It turns out that increasing the number of stages does not neces-
sarily improve the throughput, and the closed-form solutions for
the optimization problem can be explicitly obtained. Based on the
expression of the maximum achievable throughput, it is found that
the hierarchical scheme achieves a scaling with the exponent de-
pending on �. In addition, to apply the hierarchical cooperation
scheme to random networks, a clustering algorithm is developed,
which divides the whole network into quadrilateral clusters, each
with exactly the number of nodes required.

Index Terms—Ad hoc networks, hierarchical cooperation, op-
timal clustering, scaling laws, wireless networks.

I. INTRODUCTION

W IRELESS networks formed by radio nodes are a subject
of much topical interest, and they are found in various

applications such as ad hoc networks, mesh networks, sensor
networks, etc. For the optimal design and operation of such net-
works, it is of fundamental importance to determine the infor-
mation-theoretic capacity of such networks, which, however,
is a formidable task, since even for the simple three-node sce-
nario [2], the exact capacity is still undetermined after several
decades’ effort.

Although the exact capacity is extremely difficult to deter-
mine, a lot of insightful upper and lower bounds on the ca-
pacity of large wireless networks have been obtained in recent
years, e.g., [3]–[11]. The seminal work [3] initiated the study
of scaling laws, and discovered a throughput scaling of
under several communication models. Subsequently, a purely
information-theoretic approach without any restrictions on the
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communication schemes was taken in [4], where a more fun-
damental connection between the total network transmit power
and the transport capacity was discovered. As a consequence,
when fixing the minimum separation distance and letting the
number of nodes increase, the scaling law of was con-
firmed in the high signal attenuation regime. However, when the
signal attenuation was low, higher scaling laws were shown to
be possible for some special relay networks.

Therefore, an interesting question was raised as to what ex-
actly the scaling laws are in the low signal attenuation regime.
By incorporating long-range multiple-input multiple-output
(MIMO) communications with local cooperations as proposed
in [11], a recent work [1] developed a hierarchical architecture
which was able to continually increase the scaling by adding
more hierarchical stages. Specifically, for a network model
where all the nodes are confined in a unit area but still with
the far-field signal attenuation, the scaling with hierarchical
stages was claimed to be . Thus, by letting ,
any scaling of is achievable, where can be
arbitrarily small. However, there is a fundamentally important
issue that needed to be addressed, i.e., the pre-constant of the
scaling. The pre-constants of the scalings for different are
different, and they are not even lower bounded from zero.

In this paper, we will show that the complete expression
for the scaling with hierarchical stages should be ,
where, the pre-constant not only depends on , but also
tends to zero as goes to infinity. Since the preconstant affects
the scaling behavior, we will present what can be achieved with
the hierarchical scheme by providing an explicit expression
of the pre-constant. It will become obvious that adding more
stages does not necessarily increase the achievable rate for any
fixed . Actually, for each , the optimal number of stages to
choose is , where is a constant to be defined
later, and the corresponding maximum achievable throughput is

(1)

where is another constant. Therefore, as shown in (1), the
hierarchical scheme actually achieves a scaling with the expo-
nent depending on . Although the exponent converges to 1 as

increases, the convergence is not fast enough, and as a conse-
quence, we will show that the average rate per source–destina-
tion pair tends to zero.

Generally, a network with area is distinguished into two
categories based on whether , where is the
power path loss exponent. In the case where , (1) is
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achievable. In the other case where , (1) has to be
multiplied by in order to meet the power constraint. It
is worth pointing out that the results in this paper such as (1)
apply to finite . When trying to draw conclusions on scaling
laws by taking , however, it should be noted that the
results for the first case cannot remain valid if , since the
far-field model would fail to apply after some point.

For clarity, we will first present the results for regular net-
works. Then the extension to random networks is trivial after
we introduce a clustering algorithm that divides the whole net-
work into quadrilateral clusters, each with exactly the number
of nodes required for carrying out the hierarchical cooperation
scheme. This clustering algorithm is another contribution of this
paper.

The remainder of the paper is organized as follows. In
Section II, the wireless network model is described. Section III
is devoted to the hierarchical cooperation scheme in regular
networks, where we present the optimal throughput-delay
results for the scheme with different stages. In Section IV, a
clustering algorithm is developed to extend the results to gen-
eral random networks. Some concluding remarks are presented
in Section V.

II. WIRELESS NETWORK MODEL

Consider the following standard additive white Gaussian
noise channel model of wireless networks.

1) There are a set of nodes located on a plane.
2) Each node uses a common average power to transmit.
3) At any time , each node transmits the signal ,

and receives the signal . The received signal
depends on the transmitted signals of all the other nodes
as

(2)

where is white circularly symmetric Gaussian noise
of variance , and the gain

(3)

where is the distance between nodes and , and
is the is the random phase uniformly distributed in .
The phase varies with time according to a stationary er-
godic random process . Moreover, the random pro-
cesses are independent and
identically distributed (i.i.d.) across and . The parameter

is the power path-loss exponent, and G is a constant
depending on transmitter and receiver antenna gains and
carrier wavelength (see [1]).

Note that the channel model (3) is based on far-field assump-
tion [16]. Let denote the far-field distance of a transmitter
antenna. is defined as

where is the largest physical linear dimension of the antenna
and is the carrier wavelength. Moreover, should satisfy

and

Fig. 1. A regular network with � nodes and a minimum distance � .

This imposes the following constraint on the minimum separa-
tion distance between nodes

(4)

We have basically used the channel model of [1] and refer the
reader to [1] for more discussions in Section VI there.

Consider the problem of source–destination pairs in the net-
work, where each node is a source, with its destination node
arbitrarily chosen from the other nodes. For simplicity, assume
that each node chooses a different node as its destination, al-
though this requirement can be relaxed to some extend as we
can see from the coding strategy described later. Therefore, each
node is a source and also a destination for another source. We
only consider the case where all pairs communicate at the same
rate.

For the simplicity of presentation, and in order to expose the
key features of the coding strategy, we will first consider a reg-
ular network as depicted in Fig. 1, where nodes are located at
the grid points for in an area

. Then the results can be easily extended to general
random networks with high probability, where nodes are ran-
domly and uniformly distributed inside a square of area .

III. HIERARCHICAL COOPERATION IN REGULAR NETWORKS

A. Double-Stage Cooperation Scheme

As a prelude, consider only two stages for the scheme and as-
sume unit. We will follow [1], but show what is really
achievable by presenting a more transparent description. Divide
the regular network into clusters of size nodes (See Fig. 2).
The double stage scheme is based on local transmit and receive
cooperation in clusters and MIMO transmissions between clus-
ters. Consider one source node and its destination node . The
goal of is to send subblocks of length bits (in overal,
bits) to .

Let these bits be arranged in a data matrix

...
...

. . .
...
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Fig. 2. Dividing the network of � nodes into clusters of size � nodes: a
source node � and its cluster � and the destination � within cluster � have
been depicted.

which corresponds to choose one message from pos-
sible messages . Denote the th row by ( th
data subblock) and the th column by ( th data vector).
The node sends its data matrix to the node in three steps:

1) distributes its subblocks among the nodes in its cluster
by using TDMA. For this purpose, for each node in
the source cluster, encodes the data subblock to a
codeword of length chosen from a randomly gener-
ated Gaussian codebook where

. Sending one subblock requires time slots and dis-
tributing all subblocks needs time slots. At the end,
each node in the cluster obtains one data subblock of .

2) The nodes of the source cluster form a distributed array
antenna and send the bits of information to the desti-
nation cluster by MIMO transmissions. To accomplish this
step, each node encodes its subblock to a codeword

of symbols by using a ran-

domly generated Gaussian codebook
where and is the distance between
the centers of two clusters. Then nodes of the source
cluster send their codewords simultaneously to the desti-
nation cluster. Therefore this step needs time slots to
complete. Each node in destination cluster receives an
observation from the MIMO transmission at time for

according to (2) or the following vector form:

(5)

where and
is the observation vector at time .

is uncorrelated noise at the

Fig. 3. Parallel operating clusters according to 4-TDMA: Gray clusters are
active.

receiver nodes, and are given by (3). The nodes
simply store their observations. At the end of this step,
each node in destination cluster has accumulated an
observation subblock of
observations.

3) Each node in the destination cluster quantizes its ob-
servations with bits per observation to obtain a quan-
tized observation subblock
of length bits. From now on, the step is similar to
step 1 but in reverse order. The cluster nodes send their
quantized observation subblocks to by using the code-
words of length chosen from a randomly gener-
ated Gaussian codebook with power where .
The destination can decode the quantized observations
and estimate the observation subblocks and consequently,
the observation vector by an estimated observa-
tion vector . Then can decode the transmitted data
vectors . The required number of slots for this step is

.
In the double stage cooperation strategy, the power of each

observation must be upper bounded independent of cluster size,
which leads to quantization with a fixed number of bits for an
average distortion . When two clusters are neighbor, using
the power assignment of yields an unbounded
received power when the cluster size increases. A simple solu-
tion is to divide these clusters into two equal halves, each with

nodes. The source node distributes its subblocks among
nodes of the half located farther to the border. Then these
nodes form a distributed antenna and perform MIMO be-

tween the halves located farther away. Now, the required time
for the step 2) is twice the time needed for disjoint clusters, i.e.,
the required time is slots. In step 3), nodes take part
in delivering the observations to the destination. For source and
destination nodes located in the same cluster, we can simply ig-
nore the second step. According to Lemma 4.5 of [1], the power
received by each node in destination cluster in the step 2 is
lower and upper bounded independent of cluster size such that

(6)

where

(7)

(8)
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Fig. 4. A model for the quantized MIMO channel.

Each source–destination pair must accomplish the three steps.
Clustering also enables spatial reuse in the sense that clusters
can work in parallel for local cooperations (step 1 and step 3)
provided they locate far enough from each other. This leads to
three phases in the operation of the network:

Phase 1: Setting Up Transmit Cooperation: Clusters
work in parallel according to the 4-TDMA scheme in Fig. 3
(as opposed to 9-TDMA scheme in [1]1) where each cluster is
active a fraction of the total time of this phase.

When a cluster becomes active, its source nodes must per-
form the first step, i.e., distributing their subblocks to the other
nodes of the cluster by a simple time-division multiple-access
(TDMA). Each source node needs slots, hence the re-
quired time for source nodes of one cluster to exchange their
bits is at most slots and due to 4-TDMA, the whole
phase needs slots to complete. Each node transmits
with power in at most fraction of the total time of the
phase. It can be shown that this power assignment satisfies an
overall average power consumption less than . Using the
4-TDMA ensures us that the interference power each node
received from all simultaneously transmitting nodes is bounded
according to the following Lemma.2

Lemma 3.1: The interference signals received by different
nodes, due to parallel operating clusters using 4-TDMA, are in-
dependent and for the interference power that each
node is received is given by

Phase 2: MIMO Transmissions: We perform successive
MIMO transmissions according to the step 2, one MIMO for
each source–destination pair from source cluster to destination
cluster in one time slot, hence we need at most slots. Each
node encodes the subblocks by using a Gaussian code of power

as defined earlier. Since at most MIMO transmissions
are originated from each cluster, each node is active at most a
fraction of the total time of this phase and remains silent
during the rest of the phase which yields an average power con-
sumption less than .

Phase 3: Cooperate to Decode: After the first two phases,
each source–destination pair has completed the steps 1 and 2.

14-TDMA actually saves time compared to 9-TDMA. However, the scaling
won’t be changed.

2The analysis for � � � is basically similar, but the results are different,
e.g., the interference is bounded by a multiple of ���� (see [1]). We ignore this
singular case, and, for simplicity, assume � � �����.

Each cluster should accomplish the step 3 by conveying the
quantized observations to the corresponding destination nodes
located in the cluster. This phase is identical to the first phase,
except that each node has bits to transmit to each node in
the same cluster instead of bits. Therefore, this phase needs

slots to complete.
In summary, the required time for the double-stage

scheme is

Assume the channel gains are known at all nodes. All commu-
nication links in the first phase can operate at any rate less than
the following:

(9)

Communications in the second phase are performed over the
quantized MIMO channel of Fig. 4 where the notation is
used for an i.i.d. sequence of random variables. The following
lemma asserts that a spatial multiplexing gain of is achiev-
able for this channel.

Lemma 3.2: Define the average probability of error for the
quantized MIMO channel by

then there exists a strategy to quantize the observations with
bits per observation and a codebook satisfying power con-
straint to encode the data subblocks such that
arbitrary low is feasible. Moreover, the minimum quantiza-
tion rate and the maximum achievable rate of the code-
book satisfy

and

(10)

for any .
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Fig. 5. The three stages of the triple-stage cooperation scheme.

Recall that and are two constants given respectively by
(7) and (8), and is the average distortion. Note that there is a
trade-off in choosing . Although needs to be reduced for
maximizing , a small leads to a high quantization rate ,
and vice versa. Also note that in (10), it is reasonable to choose

to maximize the lower bound. In the sequel, we consider fixed
values for and to get nonzero and fixed rates and .
In addition, for simplicity, all nodes use the same rate for their
codewords and , i.e., , where

LHS of (10), RHS of (9)

Hence, the required time can be written as

We call this quantity delay because each destination can decode
its intended bits only after receiving all the corresponding ob-
servations, i.e., after the step 3. At the end of this time, each
node has delivered bits to its destination which yields a
total throughput of

which is maximized by choosing

(11)

and the corresponding delay is

(12)

Obviously, by repeating times, the double stage scheme can
also be used for the problem where each node needs to send
different information to all the other nodes. The achievable rate
is as the following.

Lemma 3.3: For a regular network of size , by the double-
stage cooperation scheme with clusters of size , each node
can deliver different bits to each of the other nodes in a
time block of

Remark 3.1: Note that denotes the number of bits to be
transmitted in a basic time block, and is proportional to the
block length for any fixed communication rate. Although for
the interest of delay, it is better to choose smaller as shown
in Lemma 3.3, shorter block length leads to higher decoding er-
rors. Hence, there is always a minimum required to ensure
enough reliability.

B. Triple-Stage Cooperation Scheme

Is it possible to achieve a better throughput by local coopera-
tion and MIMO transmissions? Recall that in Phase 1 and Phase
3 of the double stage scheme, TDMA was used in each cluster to
deliver the bits. Since each cluster itself is a network similar to
the original network only with a smaller number of nodes, this
implies that one can use the double stage scheme in each cluster
to exchange the bits as well. Next, we analyze the throughput
and delay of this new triple stage scheme when the double stage
scheme is used in Phase 1 and Phase 3.

First, divide the whole network into clusters of size ,
and then divide each cluster of size into sub-clusters of
size . Apply the double stage scheme to each cluster of
size . To avoid the interference from neighboring clusters,
use 4-TDMA as before. Hence, according to Lemma 3.3, it
takes time slots for each node to deliver

bits to each node in the same cluster and this phase needs
time slots to complete.

In Phase 2, as before, it takes time slots to complete.
In Phase 3, same as phase 1 except that there are times as

many bits to transmit, it takes time slots
to complete.

Totally, with the triple stage scheme, it takes

time slots to communicate bits for each source–desti-
nation pair. This yields a throughput of

(13)

The three stages of the scheme, namely and have
been depicted in Fig. 5. In stage , global MIMO transmis-
sions are performed between clusters of size . In stage ,
clusters work in parallel and local MIMO transmissions are
performed between subclusters of size . is the bottom
stage where point-to-point communications take place between
nodes of subclusters.
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Using the partial derivatives with respect to and to
maximize the throughput in (13), the optimal cluster sizes are
given by

and consequently the optimal throughput and the delay of the
triple-stage scheme are given by

Remark 3.2: It is easy to prove as an extension of Lemma
3.1 that for the triple stage cooperation scheme, the received in-
terference signals by different nodes of the network are uncor-
related in all the stages. Moreover the stage has the largest
interference power which can be bounded by 3. Hence, the
following coding rate and quantization rate can be used in
all the stages

(14)

(15)

Compared to the double stage scheme, the triple-stage
scheme can achieve a higher order of for throughput (an
order of for the triple stage scheme in contrast with an
order of for the double-stage scheme), but the preconstant
of throughput decreases by increasing the number of stages.
The desirable and adverse effects of increasing the number of
stages can be explained as follows.

• Increasing the number of stages results in a better use of
the degrees of freedom as the network transports more
portion of the traffic by MIMO transmissions and less by
TDMA. This in turn leads to an increase in order of in
the throughput.

• For a higher stage scheme, one should be able to bound
the interference power due to parallel operating clusters
which invokes running 4-TDMA in the network and at the
same time inside the clusters. This yields an increase in
the delay and consequently a reduction in the throughput.
Another overhead arises from quantizing and reencoding
the observations at different stages which further increases
the delay and reduces the throughput.

C. -Stage Hierarchical Cooperation Scheme

Generally, suppose that with the -stage hierarchical
cooperation scheme with cluster sizes , it
takes time slots to communi-
cate bits for each source–destination pair.

3Since the scheme runs 4-TDMA in both network and clusters, the exact in-
terference power is less than � , nevertheless this bound is sufficient to verify
that a universal coding rate � is feasible.

Replacing phase 1 and phase 3 of the double stage
scheme with the -stage scheme, we have the -stage
scheme. Obviously, for the -stage scheme with cluster sizes

, it takes

time slots to communicate bits for each
source–destination pair.

It can be verified that the general formula is

Consequently, the throughput is given by

which in general is a function of all the cluster sizes.
We maximize the throughput by using the partial derivatives.

Solving for yields

where let and . Therefore, the optimal choices
of the cluster sizes are

for (16)

Next we present one of our main results.

Theorem 3.1: For a regular network of nodes in a unit area,
by the -stage hierarchical cooperation scheme with the optimal
cluster sizes (16), the throughput is given by

(17)

and the corresponding delay is

For any fixed , we can find the optimal to maximize
. Let

which leads to

Hence, the optimal number of stages to choose is

(18)
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In order to obtain a simple formula, let

(19)

where . Note that

Therefore,

(20)

where choosing as in (19), we have

(21)

Obviously (21) is a very accurate estimation, although we made
some approximation in (19) and should always be an integer.

Theorem 3.2: For a regular network of nodes in the unit
area, by the hierarchical cooperation scheme with the optimal
number of stages (18) and the optimal cluster sizes (16), the
maximum throughput is approximately given by (21).

Actually, we can provide an exact upper bound of . It
follows from (20) that

(22)

where, in the last inequality, “ ” holds if .
To check how much different (22) is from the linear scaling

law , we take the ratio

Hence, the hierarchical cooperation scheme cannot achieve ar-
bitrarily close to linear scaling. Instead, the difference grows
to infinity as increases. Consequently, the average rate per
source–destination pair tends to zero.

D. Hierarchical Cooperation for Networks With Area

Generally, consider a regular network with area . Note that
distance affects the power loss. We can scale down the general
regular network with area to a regular network with unit area,
but with the power constraint at each node, since the

distance between nodes is reduced by a factor of . Recall that
when unit, running the hierarchy does not need the whole
power budget and the average power consumption is less than

per node. Thus, a general network can be dichotomized
based on the relation between its area and the number of nodes
into two cases.

• Dense network: The network is called dense when
. Then the nodes have enough power to run the hierar-

chical scheme and get the throughput-delay results as dis-
cussed above.

• Sparse network: The network is called sparse when
. Then the nodes do not have sufficient power to

run the hierarchical scheme all the time. Instead, they run
the scheme in a fraction of the time with power

and remain silent during the rest of the time.
Obviously this bursty modification satisfies the original
average power constraint , and correspondingly, the
achieved throughput is modified by a factor of ,
e.g., in (17) and (21).

IV. EXTENSION TO RANDOM NETWORKS

In this section, we extend the results of regular networks to
random networks. We first review the extension method of [1]:
Consider a random network of unit area with nodes. Since the
average number of nodes in a cluster of area is , the
hierarchical scheme was applied to this random network by di-
viding the network into the clusters of area and proceeding
to clusters of area , for the -stage scheme, and get the
throughput-delay of the regular network but with a failure prob-
ability. Failure arises from the deviation of number of nodes in
each cluster from its average. By a simple Chernoff bound ar-
gument, the probability of having large deviations from the av-
erage can be bounded (see [1, Lemma 4.1]). As , this
probability goes to zero.

The above clustering method is not sufficient for the fol-
lowing reasons.

1) The clusters of area are required to contain ex-
actly nodes to perform the hierarchical scheme. A de-
viation from the average number of nodes , even very
small, results in failure of the scheme. However, [1] only
bounded the probability of large deviation.

2) The probability of having exactly nodes in a cluster
of area is given by the binomial distribution

. Using the

Stirling’s formula to approximate the factorial terms, as
, yields

Recall that for the optimal operation of the scheme, the
cluster sizes are chosen proportional to where

. Hence, the probability of having nodes is pro-
portional to which, in fact, goes to zero.

To resolve the issue of making clusters of exactly nodes,
we will develop a clustering algorithm in this paper. To achieve
high probability, we need to consider simultaneously the prob-
abilities of events of the entire class of clusters, which invokes
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a sort of uniform convergence (in probability) of law of large
numbers over the entire class. To resolve this, we will resort to
the Vapnik–Chervonekis theorem.

A. Choosing an Appropriate Cluster Shape

We use the Vapnik–Chervonekis theorem [13], [14] to find
the appropriate cluster shape. Let be a set of subsets and a
finite set of points. First, we recall some definitions as follows.

Definition 1: is the projection of on which is
defined as .

Definition 2: A is shattered by if , i.e., if
the projection of on includes all possible subsets of .

Definition 3: The VC-dimension of , denoted by VC-d
is the cardinality of the largest set that shatters. It may be
infinite.

The Vapnik–Chervonekis Theorem: If is a set of finite
VC-dimension and is a sequence of i.i.d. random vari-
ables with common probability distribution , then for every

(23)

whenever

(24)

An application of this theorem has been already presented in
[3] for the set of disks on the plane. In this section, we consider
a more general case; we apply the Vapnik-Chervonekis theorem
to the set of all the clusters that partition the given random net-
work with nodes in the unit area. Note that a finite VC-di-
mension, for the set of clusters , is a sufficient condition for
the uniform convergence in the weak law of large numbers. As-
sume that this condition is satisfied and the set of clusters has a
finite VC-dimension (We will later derive a sufficient condition
for the cluster shapes to make the VC-dimension finite). Denote
the area of each cluster by and its number of nodes
with , then we have the following lemma.

Lemma 4.1: For every cluster that contains exactly
nodes

(25)

with probability larger than where
.

Proof: Let denote the class of clusters with finite VC-di-
mension VC-d . To satisfy (24), let . Then the
Vapnik–Chervonekis theorem states that

(26)

Therefore, if a cluster contains exactly nodes, i.e.,
, then its area must satisfy (24) with high probability.

Fig. 6. VC-dimension for the set of half-spaces is �. (a) A set of 3 points is
shattered and (b) no set of 4 points can be shattered.

Note that if a cluster has an area less than , then
with high probability it contains less than nodes. Similarly,
if its area is greater than , with high probability, it con-
tains more than nodes. Next, we need to choose a right shape
for clusters to make the VC-dimension finite. We will make
use of the following lemma, due to [15], in finding the appro-
priate shape. We have presented the sketch of the proof in the
Appendix for completeness.

Lemma 4.2: Let be a set of subsets with VC dimension .
Consider another set which consists of -wise intersections
of subsets in . The VC-dimension of the new set is at most

.

Corollary 4.1: The VC-dimension of the set of convex -lat-
erals is finite and upper bounded by where is the
number of sides.

Proof: Consider a line in the plane. It divides the plane
into two half-spaces. Choose one of the half-spaces as subset.
Define as the set of all half-spaces produced by considering
different lines in the plane. It is easy to prove that VC-d
since a set of 3 nodes that are not collinear can be shattered
(see Fig. 6(a)) but it is impossible to find a set of 4 nodes that
are shattered by (see Fig. 6(b)). The labels “ ” and “ ” in
Fig. 6 have been used to specify different subsets of points. The
key observation is that any convex -lateral is an intersection
of half-spaces. In the light of this observation and by using
Lemma 4.2, it is concluded that the VC-dimension of the set of
convex -laterals is at most .

We will use a set of quadrilaterals as the clusters. Since the
VC-dimension is at most , we can apply Lemma 4.2
with to these clusters. Next, we develop an algorithm
to make clusters of exactly nodes.

B. Clustering Algorithm

Divide the network into squares of area , and start from the
square located on the top left corner. Depending on how many
nodes are within this square, three situations may arise:

1) if the number of nodes in the square is exactly , ignore
this square and go to the next one;

2) if the number of nodes in the square is less than , make a
quadrilateral cluster by expanding the square: Move the top
right vertex of the square to the right such that the created
quadrilateral cluster contains exactly nodes;

3) if the number of nodes in the square is more than , make
a quadrilateral by shrinking the square: Move the top right
vertex of the square to the left such that the resultant quadri-
lateral cluster contains exactly nodes.

After making the first cluster, go to the second cluster on the
right side and make it a quadrilateral with exactly nodes

Authorized licensed use limited to: University of Waterloo. Downloaded on July 15, 2009 at 12:14 from IEEE Xplore.  Restrictions apply.



GHADERI et al.: HIERARCHICAL COOPERATION IN AD HOC NETWORKS 3433

Fig. 7. Clustering of a random network with exactly� nodes in each quadri-
lateral cluster.

by expanding or shrinking as discussed above. Repeat the pro-
cedure for all the squares in the first row. For the top right
square, use its bottom right vertex to do expanding/shrinking.
For the second row, starting from the right square, move to the
left side, and make the quadrilateral clusters of nodes by
expanding-shrinking. Perform the same procedure for all the
rows, and we will have a set of quadrilateral clusters; each one
contains exactly nodes. One instance of such a clustering
algorithm has been depicted in Fig. 7. Note that according to
Lemma 4.1, the amount of expanding/shrinking in the areas of
the squares is less than with high probability.

C. Network Operation

The operation of random networks is similar to the operation
of the regular networks. The centers of the quadrilateral clus-
ters are defined as the centers of the original squares. Note that
the new quadrilateral cluster will include the center of its orig-
inal square with high probability. To observe this property of our
clustering algorithm, consider the combination of the clusters 1,
2, and 3 in Fig. 7. This combination gives a larger quadrilateral
cluster with , hence according to (26) the deviation
of the area of this cluster from its average must be less
than and consequently . Therefore is

much smaller than the square side (recall that
for ) and the quadrilaterals are concentrated on the
squares. In other words, each quadrilateral corresponds only to
one square, and vice versa. Hence, the hierarchical scheme can
be applied to the random networks by using the corresponding
quadrilateral of each square instead of original square cluster.
By making clusters of nodes for the bottom stage of the
hierarchy using the clustering algorithm, these clusters can be
combined to make larger clusters of nodes for the upper
stage. Following the same procedure, make clusters of exactly

nodes for the top stage. It is worth noting that for combined
clusters, for example, combination of clusters 6, 7, 10, and 11 in
Fig. 7, we can define the same deviation factor as defined
for the clusters of the bottom stage. As the result, the received
power of each MIMO transmission will be lower-bounded and

upper-bounded by (6). The only difference is that the coeffi-
cients and in (7)–(8) should be replaced by

or equivalently

can be chosen as the optimal cluster size for different stages,
i.e., for . But it holds for any that

Moreover, since , the right-hand side (RHS) of
this inequality is a decreasing function of for large values of

and approaches to one. In fact, for any given , there
exists a such that for all , the RHS is less than .
Hence, for all the coefficients can be chosen as

(27)

Consequently, the required quantization rate and the channel
coding rate can be defined based on the above coefficients.
Obviously as and and we can use the
same quantization and coding rates as the rates already used for
regular networks.

V. CONCLUSION

In this paper, the exact achievable throughput of the hierar-
chical scheme with any number of stages is derived. The op-
timal cluster sizes for all the stages are found to maximize the
total throughput. We also find the optimal number of stages to
choose for any network of size . We observe that linear scaling
is not achievable via the hierarchical scheme. As one increases
the number of stages of the hierarchy to achieve a scaling closer
to the linear one, the overhead due to using 4-TDMA scheme for
parallel operating clusters and quantizing and re-encoding the
observations at different stages, reduces the performance sig-
nificantly. It also leads to an exponential growth for the delay.
Finally, it is worth pointing out that the results presented here
provide solid conclusions to networks with finite sizes, not only
limiting behaviors.
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APPENDIX A

Proof of Lemma 3.1: The proof follows in parallel with
Lemma 4.2 of [1] for 9-TDMA. Consider Fig. 8 for the regular
network in the unit area. The interference signal received by
each node is given by

where is given by (3) and is the signal transmitted by an
active node located in a simultaneously operating cluster with
power . is the set of clusters operating simultaneously with
node which can be grouped such that a group contains

clusters which are separated from by a distance larger than

where . The number of such groups can be

easily bounded by where is the number
of clusters

where we used the assumption that channel gains are indepen-
dent. Substituting the value of yields

When , the above summation can be bounded by

which concludes the proof.

APPENDIX B

Proof of Lemma 3.2: Consider Fig. 4. In the simple strategy
of [1], each node simply quantizes the observations with rate Q
bits per observation. Let the observations be encoded indepen-
dently with a distortion constraint . Since each observation
is must satisfy

(28)

Now consider the quantized MIMO channel which can be
written as

(29)

Fig. 8. Grouping of interfering clusters in 4-TDMA.

and . The mutual information of this channel
with CSI at receiver is given by which can be
written as where (Noise
and distortion are assumed to be uncorrelated). When varies
in a stationary ergodic manner, in general is chosen to max-
imize the expectation. Recall that in our model, varies ac-
cording to a stationary ergodic process, and elements of H are
independent with mean zero, and different variances, such that
the distributions of real and imaginary parts of the elements of

are symmetric around the origin. In this case, this is a well
known result that the optimal must be diagonal. In other
words, independent signaling can achieve the capacity. Now,
consider the strategy of [1] when the elements of transmitted
vector are i.i.d. , i.e., nodes use the same power

. In this case, the mutual information is given by

Define as , then the above mutual information can
be written as

where and . Let
be the eigenvalues of , then the mutual information
is given by
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where

Here, we have used the fact that , and and are
given by (8). Therefore the mutual information can be upper-
bounded by

This upper bound, along with the lower bound of Lemma 4.3
of [1], yields the given bounds on the maximum achievable rate

. The destination can decode the message with an
average error probability arbitrary close to zero if

for any as .

APPENDIX C

Proof of Lemma 4.2: The proof is based on the following
Lemma.

Lemma C.1: Consider a set of cardinality and define

for . If the VC dimension of is ,

then
i) ;

ii) for all .

Proof of Part (i): We show that for any that has VC
dimension d, . Letting , we get the
result. The proof of the latter is based on induction. Consider any
point . Define the following sets:

Note that and are families of subsets of and that
. Obviously has VC dimension at

most and therefore . If we prove
has VC-dimension less than , then the lemma follows since

. The VC-dimension of
is at most since if its VC-dimension is , there exists

a set such that it is shattered by and .
But in this case, can be shattered by ; it means
that VC-dimension of is which is impossible.

Proof of Part (ii): The second inequality of part (ii) is based
on Stirling’s approximation for and the proof of the first in-
equality is by induction on and .

To prove Lemma 4.2, suppose has elements. Note that,
according to the above lemma, . Every set
in is of the form where .

This shows that . If

can not be shattered by . Therefore,
by part (ii) of the lemma, it suffices to choose such that

which is satisfied when . This concludes the
proof.
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